MANAGING COMPLEXITY IN SCIENTIFIC SOFTWARE

SHARMIN ISLAM
Bachelor of Science, Military Institute of Science and Technology, 2013
Master of Business Administration, Bangladesh University of Professionals, 2015

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge
LETHBRIDGE, ALBERTA, CANADA

(© Sharmin Islam, 2020

www.manharaa.com

ProQuest Number: 27963072

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQQuest.
/ \

ProQuest 27963072

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

www.manharaa.com

MANAGING COMPLEXITY IN SCIENTIFIC SOFTWARE

SHARMIN ISLAM

Date of Defence: April 27, 2020

Dr. Shahadat Hossain
Supervisor

Dr. Saurya Das
Committee Member

Dr. Robert Benkoczi
Committee Member

Dr. Howard Cheng
Chair, Thesis Examination Com-
mittee

Professor

Professor

Associate Professor

Associate Professor

Ph.D.

Ph.D.

Ph.D.

Ph.D.

www.manharaa.com

Dedication

To my beloved parents and

my son, Rayan.

iii

www.manharaa.com

Abstract

One of the expected benefits of a modular design is flexibility. By the word “flexibility”
we mean possibility of drastic changes to a module without changing or without know-
ing other modules. Based on the evolutionary data available on version control systems,
it should be possible to analyze the quality of a modular software architecture and decide
whether it is worth to restructure its design. In this thesis we investigate this issue using a
novel approach based on a general theory of modularity that uses design structure matrices
(DSM) for reasoning about quality attributes. Using our approach, we can categorize the
functions in different tiers. This finding suggests that the analysis of different tiers of func-
tions of a software system might serve as guidance to developers in the challenging task
of redesigning a software by detecting and retrieving components that could be reused in

other software projects.

v

www.manaraa.com

Acknowledgments

First and foremost, I would like to thank the Almighty for giving me the opportunity,
strength, and patience to undertake this research. This work would not have been possi-
ble without His blessing.

I am lucky that I have worked under the supervision of Dr. Shahadat Hossain. The way
he treated me, it felt like he is not my supervisor instead my guardian. It may be difficult for
me to work under any supervisor in future after working with such a great person. Thank
you, Sir, for everything.

I want to express my sincere gratitude to my supervisory committee members, Dr.
Saurya Das and Dr. Robert Benkoczi. Their guidance, encouragement, and suggestions
helped me a lot. Their immense efforts and the way of directing the students of optimiza-
tion research group can be a model to others.

Without the encouragement I got from my families it would not be possible for me to
come to this far and go forward. I am very grateful to my parents as well as to my parents-
in-law and all the members of my two families. I want to thank my husband Wali. Without
him, my life would be a lot more difficult.

I also want to thank all my friends and well-wishers as well as all the members from the
Optimization group.

I am thankful to the Alberta Innovates for Technology Futures Graduate Student Schol-
arship, and the School of Graduate Studies (SGS) of the University of Lethbridge for their
financial support.

Last but not least, I am also grateful to the researchers for their ideas and contributions

in this field.

www.manaraa.com

Contents

Contents vi
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Preliminaries e 3
1.1.1 Scientific Computing Software 3

1.1.2 Software Architecture 4

1.1.3 Dependency Relationship 4

1.2 Our Contribution e 5

1.3 Thesis Organization o v v i i 5

2 Dependency Extraction and Modeling 7
2.1 Design Structure Matrixo 7
2.2 Dependency Extractiono 9

2.3 Relations, Matrices and Graphs 12
23.1 Relations 13

232 Graphs 13

233 MatriCesS. e e e 15

3 Dependency Analysis 17
3.1 FEigenvalues and Eigenvectors 17

3.2 Huband Authority 20

3.3 Hypertext Induced Topic Search (HITS) 20

4 Methodology and Results 24
4.1 Methodology e 25
4.1.1 Extracting Dependencies 26

4.1.2 BuildingDSMs 27

4.1.3 Computing Hub and Authority Ranking 29

4.1.4 Computing Cosine Similarities 32

4.1.5 TheAlgorithm, 34

42 Settings e e e e e e e e e 36
42.1 TargetSystems e 36

4.2.2 Selection of the Threshold 38

43 Results. 38

vi

www.manaraa.com

CONTENTS

431 DISCuSSiOno e e s 39

5 Summary and Future Work
Bibliography
A List of Functions of CSparse

B List of Functions of ADOL-C

Vil

48

50

52

53

www.manharaa.com

List of Tables

3.1 Hub and Authority Ranking (Scores correspond to the dominant eigenvector) 23

4.1 Hub and Authority rank of first five functions of CSparse project 32
4.2 Hub and Authority rank of first five functions of ADOL-C project 32
4.3 Cosine Similarities of First Five Functions (considering Hub and Authority
Rank) of CSparse Project 34
4.4 Cosine Similarities of First Five Functions (considering Hub and Authority
Rank) of ADOL-C Project 34

viii

www.manharaa.com

List of Figures

2.1 Anexample of DSM: a) Dependency Graph, b) Dependency Matrix 8
2.2 Callsrelationship 10
2.3 Functiondependency 11
2.4 Functiondescription 11
2.5 A pseudocode example for function dependency 12
2.6 An example of graph: a) Undirected Graph, b) Directed Graph 14
2.7 Anexampleofavaluedgraph 14
2.8 AnexampleofaDSM L 16
3.1 Anexample: a) A Graph, b) An Equivalent Adjacency Matrix or DSM . . . 18
4.1 Sparse Matrixof CSparse o 26
4.2 Sparse Matrix of ADOL-C 27
4.3 Dependency graphof CSparse 28
4.4 Dependency Graph of ADOL-C 29
45 DSMof CSparse e 30
4.6 An Example of Hub and Authority 31

47 DSM of CSparse with provided partitions [6]. Primary, Primary Utility,
Secondary, Secondary Utility, Tertiary and Tertiary utility are marked by

red, purple, green, yellow, blue and brown colors respectively. 39
4.8 CSparse, Tiers of Hub Functions functions are selected from DSM 40
4.9 CSparse, Tiers of Authority Functions functions are selected from DSM . . 40
4.10 CSparse, Tiers of Hub Functions functions are selected from AAT 42
4.11 CSparse, Tiers of Authority Functions functions are selected fromATA . . 43
4.12 ADOL-C, Tiers of Hub Functions functions are selected from AAT 44
4.13 ADOL-C, Tiers of Authority Functions functions are selected fromA'A . . 45
4.14 ADOL-C, Hub Functions are selected from AA ", threshold =04 46
4.15 ADOL-C, Authority Functions are selected from ATA, threshold =04 . . 47
A.1 Listof Functionsof CSparse 52
B.1 Listof Functionsof ADOL-C. 53
B.2 Listof Functions of ADOL-C 54
B.3 Listof Functions of ADOL-C 55
B.4 Listof Functionsof ADOL-C. 56

X

www.manaraa.com

Chapter 1

Introduction

Software systems can be viewed as a network of components joined together by dependence
relationships. In software and other technological systems such as process, product, or
organizational architectures some of its functionalities are realized by the interaction pattern
of components or subsystems [7]. For example, modular software systems allow tracking
bugs to a small number of well-defined subsystems or modules.

Many scientific software are usually written by domain experts and address some spe-
cific scientific computing problem. For instance, CSparse software implemented in C is
concerned with solving system of linear equation Ax = b where the coefficient matrix A
is sparse. ADOL-C is a software system to compute mathematical derivatives (gradient,
Jacobian, Hessian, Taylor coefficients) of a mathematical function available as a computer
program in a programming language (C). The software applies algorithmic differentiation
techniques to compute accurate (upto machine precision) numerical derivatives of the func-
tion program at a specified point.

A convenient tool to represent and analyze architectural complexity of these software
that is popular among systems engineers and architects is the so called Design Structure
Matrix (DSM), and extensions Domain Mapping Matrix (DMM), and Multi Domain Matrix
(MDM) [7]. Since a DSM can be represented by a matrix in R™*", it is amenable to analysis
by sophisticated linear algebraic methods such as singular value decomposition (SVD).
Moreover, utilizing the duality of a sparse matrix and its graph, a sparse matrix A can be

rearranged (through permutation P) into a computationally beneficial form called “block

www.manaraa.com

1. INTRODUCTION

triangular form (BTF)” PT AP also known as “partitioning” in DSM community.

Professor Hossain and his group have proposed using DSM to model and analyze de-
pendence complexity of scientific software systems [14, 15, 1, 13]. One of the main mo-
tivations was to study legacy code to determine the dependency information through static
call graphs. The information gathered can be utilized to restructure or reuse the compo-
nents by analyzing the dependence information using techniques from the emerging filed
of complex networks [9].

In a recent work, Professor Hossain and his group have studied architectural properties
of a small suite of representative scientific software [15]. The studied software tools display
shorter characteristic path lengths, small nodal degrees, and small propagation costs, similar
to general-purpose software such as operating systems [4, 19].

For variety of reasons legacy software may not contain adequate technical documenta-
tion so that from a usability point of view it may be difficult to detect and retrieve com-
ponents that could be reused in other software projects. In this thesis we study software
systems specifically designed for problems arising in scientific and engineering applica-
tions [16].

Analytics tools such as “Understand” [21] allows us to view dependency structure of
the software at varying level of details: file, class, function, statement etc. In our work
we analyze the dependency structures of programs where caller-callee relation between
functions captured by static call graph depicts fundamental control flow in the program.

Static call graphs are limited to portraying direct dependencies among design elements
(in our case functions). In this paper we are interested in uncovering “similarity” among de-
sign elements. We can then use a suitable similarity metric to partition the design elements
among groups or clusters where the elements in the same group are “similar” in a certain
way. An immediate application of such a decomposition is the ability to retrieve group of
“similar” functions from a software repository. Combined with the notion of “importance”

of design elements [13], our goal in this work is to group or cluster the design elements into

www.manaraa.com

1.1. PRELIMINARIES

“tiers” ranked by their “importance”.

1.1 Preliminaries
1.1.1 Scientific Computing Software

Thousands to millions of lines of source code make software systems as complex prod-
ucts. The software system depends on design decisions, internal and external constraints,
different technical and non-technical concerns [11]. Development of scientific comput-
ing software applications is considered as a proof-of-concept tool. But powerful hardware
resources facilitated scientific software to solve and simulate large problem. The recent
development of more powerful hardware resources encourages to increase number of sci-
entific applications which simulate more effectively and efficiently than the applications
built before [15]. These simulation software applications are highly complex and contain
millions of lines of computer code. These applications have significant investment in time
and other computational and manpower resources. Re-usability, efficiency, portability, cor-
rectness, robustness and ease of use are various attributes of scientific software.

One or more independently developed modules compose a software system. We can
consider each module as a segment of the software. From these modules we can find their
dependencies. For example, we say, Module A depends on Module B when Module A
uses (calls) Module B. Here we describe two types of software dependencies: static and
dynamic. Static dependencies are extracted from code that is not in execution state and use
source code as input. Dynamic dependencies are extracted from the code in an execution
state and use executable code and the program state as input. The problem of dynamic
dependency is the presence of some subroutines which are executed only at run time. The
benefit of considering static dependency is using source code as input and does not relying

on program state. This is why we have considered static dependency in our work.

www.manaraa.com

1.2. OUR CONTRIBUTION

1.1.2 Software Architecture

Architecture is the fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the principles guiding its
design and evolution [20]. The software architecture of a program or computing system is
the structure or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them [2].

The complexity of large software systems can be identified easily using software archi-
tecture. For a software system, its architecture is considered as its high level structure. In
other words, software architecture is an abstraction of a complex system. There are some

benefits of this abstraction, such as:

1. The software architecture can give a basis for analysis of the behavior of software

systems.

2. It can save design costs by providing a basis for re-use of elements (A complete soft-
ware architecture or parts of it) whose stakeholders require similar quality attributes

or functionality.

3. Early design decisions can be made which helps in software development life cycle

(development, deployment, and maintenance).

1.1.3 Dependency Relationship
A dependency relationship can be applied between elements of a system to indicate that
a change in one element may result in a change in other elements if there exists dependency.
Dependency relationship can be viewed as a complex network. This complex network
view has been successfully applied in numerous areas. For example, the human cerebral
cortex (a complex system) has been used in the paper [5]. That work reported local and
global differences between diseased patients and controls by evaluating communicability

measure of weighted networks.

www.manaraa.com

1.3. THESIS ORGANIZATION

1.2 Our Contribution

A software may not contain adequate technical documentation for variety of reasons.
So it may be difficult to detect and retrieve components that could be reused in other soft-
ware projects. Our goal is to retrieve group of “similar” design elements from a software
repository into “tiers” ranked by their “importance”.

Our contributions to achieve this goal are pointed below.

1. Analyzing of dependency structure of the software by capturing caller-callee rela-

tionship between functions using tool “Understand” [21].

2. Ranking the design elements (functions) using the notion of “importance” of those

design elements [13].

3. Using a suitable similarity metric (cosine similarity) to partition the design elements

(functions) among groups or clusters.
4. Grouping the design elements into “tiers” ranked by their “importance”.

5. Numerical experiments to show the results of our implementation.

1.3 Thesis Organization

There are a total of 6 chapters in this thesis. Chapter 1 is the introductory chapter where
we introduce the problem and significance of solving the problem in general. Then we
present definitions and description of scientific computing software and their architectures
as well as dependency relationship concepts. We also discuss our contribution and thesis
organization in this chapter.

In Chapter 2, we discuss the description of the dependency extraction and modeling.
We describe some tools that are used to extract and visualize call graphs. At the end of this

chapter, we mention the tool that was used in our thesis.

www.manaraa.com

1.3. THESIS ORGANIZATION

Detailed description about component centrality using a spectral method has given in
Chapter 3. Before explaining these methods, with some small examples, we describe eigen-
values, eigenvectors, hub and authority.

Chapter 4 includes a brief discussion on the methodology of our novel approach to
analyze the scientific software followed by a detailed description of the target systems.
These systems include CSparse and ADOL-C. Then we discuss the implementation of the
algorithm. Finally, we report and discuss our results from the experiments.

We give the concluding remarks and future work directions in Chapter 5.

www.manharaa.com

Chapter 2

Dependency Extraction and Modeling

2.1 Design Structure Matrix

The Design Structure Matrix (DSM) is a simple, compact and visual representation of a
system or project in the form of a square matrix [7]. The DSM is a network modeling tool
used to represent the elements comprising a system and their interactions. It highlights the
system’s architecture or the relationships between elements in a system by examining the
dependencies that exist between its elements in a square matrix.

To analyse a system, DSM models can be rearranged or partitioned using various ana-
lytical methods, such as, clustering and sequencing.

DSM offers following advantages:
e The DSM provides a compact representation format for large, complex system.

e The DSM highlights a system-level view to a system designer which supports more

globally optimal decision making.

e The basic structure of a complex system becomes understandable because of the

DSM.

e The DSM is represented using a square matrix. Hence a number of powerful analysis
in graph theory and matrix mathematics as well as specialized DSM analysis methods

are applicable to DSM.

We use a simple example to show the element relationships (see Figure 2.1). We note

that the system thatis composed of five elements (or sub-systems): “A”, “B”, “C”, “D” and

7

www.manaraa.com

2.1. DESIGN STRUCTURE MATRIX

“E”. We assume that the five elements completely describe the system and characterize its
behavior while we use DSM for the modeling purpose. To represent this system pictorially
we use graphical form. The system graph is constructed by allowing a vertex/node on
the graph to represent a system element and an edge joining two nodes to represent the
relationship between two elements. The directionality of influence from one element to
another is captured by an arrow instead of a simple link. For example, we can see there is
an arrow from Element A to Element B. If these elements are considered as function then
we can say Function A calls Function B. Therefore Function A is caller and Function B is

callee. The resultant graph is called a directed graph or simply a digraph (shown in Figure

° EIementA‘BCD‘E
A X X

o : x x
' C x

D

2.1a).

/'y
™

(a) (b)

Figure 2.1: An example of DSM: a) Dependency Graph, b) Dependency Matrix

We can represent DSM using matrix form. The matrix representation of a directed
graph has some properties, such as, it is binary (unweighted); or it can also be weighted, it
is square (it has n rows and columns where 7 is the number of nodes of the digraph), it has
k non-zero elements (k is the number of edges in the digraph).

The elements’ names are placed down the side of the matrix as row headings and across
the top as column headings in the same order (see Figure 2.1 b). If there exists an edge (rela-

tion) from node x to node y, then the value of Element [x][y] is marked with an X. Otherwise,

www.manaraa.com

2.2. DEPENDENCY EXTRACTION

the value is left empty. The diagonal elements of the matrix do not have any interpretation
but in some cases they are considered as representative of the nodes themselves. For binary

matrices X is 1 and for other matrices X means numeric value.

2.2 Dependency Extraction

Investigating program dependencies such as function calls is challenging for very large
systems [22]. There are two main classes of the call graph extractors: Lightweight and
Heavyweight. A fraction of the entire static information is provided by lightweight extrac-
tion, on the other hand, heavyweight extractors provide a complete call graph. Heavyweight
extractors again can be categorized in two types: strict and tolerant. Like compilers, a strict
heavyweight extractor stops when there is a lexical or syntax error. Tolerant extractor pro-
vides complete static call graphs.

Understand [21] is a tool which can be used for dependency extraction. In this thesis,
we have used this tool. Understand is used to analyze the dependencies between software
artifacts in a project. The application supports a wide range of programming languages,
including Java, C#, C++ classes & Ada packages for dependency information and can
access dependency information from the C++ and PERL APIs. Using this software, we
can navigate codes using a detailed cross-referencing and visualize them using graphical
representations. Analyzing any source codes means analyzing its different units because
these units have some distinct features which reflects on source codes. Understand has
architecture features that help us to create hierarchical aggregations of source code units.
Dependencies between these units can be observed from the Dependency Browser and vi-
sualized by Dependency Graphs. However, we can consider different parameters, such as,
nodes, files, classes, packages, and interfaces to observe dependencies between different
units of the source codes using the Dependency Browser. This tool has following features

to observe dependencies[21]:

o Rapid,browsing,ef dependencies for files and Understand architectures

www.manaraa.com

2.2. DEPENDENCY EXTRACTION

e List “dependent” , and “dependent on” entities, for files and architectures

e Spreadsheet export of dependency relationships

e A Dependency Browsing dock that shows all dependency information

For a brief explanation of the dependencies that can be extracted using Understand,
we can consider a demo source code shown in Figure 2.5. Now we can demonstrate this

example to show different dependencies:

e Include dependency: The Include Dependency graph shows the files that are needed
to be included for implementation. For example, a file “xyz.c” is dependent on an-
other file “xyz.h” means that “xyz.c” has included the file “xyz.h”. This dependency

can be found using Understand.

e Call dependency: Using Understand, Figure 2.2 shows calls relationship from A to
D. We can check whether there is a relationship between two elements of the system
or not. Then using the tool Understand, we can also see Figure 2.3 where the files/
functions with the outgoing edges are dependent on the files/ functions with the in-
coming edges. For example, by looking at Figure 2.3 we can tell that the function A
is dependent on the functions B and C, as there is an edge from A to B and C. The

details of these calls or dependencies can be found in the Information Browser.

Figure 2.2: Calls relationship

e Init dependency: The init dependency focuses on the initialization of an object.

10

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

—

Figure 2.3: Function dependency

e Set dependency: Using Understand we can also find the set dependencies. Suppose
a function from one file sets value of an object from different file. Then we say there

exists a set dependency between these two files.

e Uses dependency: The Uses Dependency Graph shows the various uses between two
files. For example by looking at the use dependency graph we can tell that how
many times a file/ function uses another file/ function. Figure 2.4 shows some uses
information of Function B. Here we can see B calls functions D and E and called by

Function A. From graphical view we can see how many times it calls other functions.

B

\

w Information Browser a3 X

& = Q % ~ ¥ISync [|FileSync | v
A — Function E

Defined in: example.c
—'! Return Type: void
+ Parameters

= Calls

r D

L=
= Called By

rA
+ References by Flat List
b Metrics
b Architectures

Figure 2.4: Function description

11

www.manharaa.com

2.3. RELATIONS, MATRICES AND GRAPHS

File Edit View Search Tools Documents
B @ & | « @ | X O O Q &

#include<stdio.h>
int x=0;

void E()

printf("E");
D();

}
void D()

printf("D");
AQ);

}
void C()
{

printf("C");
ECQ);

}
void B()

printf("B");
D();
E();

}]
void A()
t,
1f (x!'=0) retun;
X++;
printf("A");
B();
CO);
}

Figure 2.5: A pseudocode example for function dependency

2.3 Relations, Matrices and Graphs

Analysis of large complex network is common in analysis of social networks and hence
their representations have become prime concern of the researchers. Besides a scientific
software also has pairwise information between its units (modules) which require pairwise
representation.

The field of pairwise information analysis uses three, highly related, mathematical con-

structs to represent them: relations, graphs and matrices.

12

www.manharaa.com

2.3. RELATIONS, MATRICES AND GRAPHS

2.3.1 Relations

A binary relation R can be defined as a set of ordered pairs (x,y). For most useful
relations, the elements of the ordered pairs are naturally associated or related in some way.
This relation (ordered pairs) relates the two sets together and comprises a mapping.

For example, a relation can be found in a function too. Here y = f(x) = 2x is a func-
tion of all even numbers. The equation notation is just short hand for enumerating all the
possible pairs in the relation, such as, {(1,2),(2,4),(3,6),...}.

Example shown in Figure 2.5 can be represented as R = {(A,B), (A,C),(B,D), (B,E),
(C,E),(D.A).(E,D)}.

2.3.2 Graphs

Let G(V,E) be a graph where V is the finite set of vertices and E is the set of edges
representing pairwise relationship between vertices in V. There are some categories of

graphs and we use them according to our needs for analysis.

e Directed and Undirected graphs: Directed graphs (also called digraphs) is a graph
that is made up of a set of vertices connected by edges, where the edges have a
direction associated with them. This graphs consist of ordered pairs. We can use
these to represent non-symmetric relations like call graphs. On the other hand, an
undirected graph consists of unordered pairs where all the edges are bidirectional.
They are used for the relations which are necessarily symmetric. Figure 2.6 (a) is an

example of an undirected graph and Figure 2.6 (b) is an example of a directed graph.

e Valued and Non-Valued graphs: In valued graphs, the edges have values attached
to represent characteristics of the relationships, such as strength, duration, capacity,
flow, etc. For our example, we can label an edge by the number of times a function
is called. Non-valued graphs do not express any value for the edges. Figure 2.7 is
an example of valued graph, where each edge has a value on it. On the other hand,

Figure 2:6 can'be considered as examples of two non-valued graphs.

13

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

B oL
) ©

Figure 2.6: An example of graph: a) Undirected Graph, b) Directed Graph

(@)

100

Figure 2.7: An example of a valued graph

o Reflexive and Non-Reflexive graphs: Reflexive graphs allow self-loops. That is, a
vertex can have an edge to itself. For example, if a function calls itself (recursive

function) then there will be an edge from that vertex to itself (self-loop).

e Multi-graphs: If there exists more than one edge between two vertices, then the
graph is called a multigraph. However, instead of using multigraphs, we prefer to use
valued graphs. For example, if Function A calls Function B for two times, then we

place a label 2 on the edge between A and B.

Now we require some preliminary definitions.
The degree of a vertex is the number of vertices which are adjacent to that vertex.
However, it is the number of edges that are incident upon that vertex. For example, in

Figure 2:6'(a); Vertex 4 has degree 3. A zero-degree vertex is called isolate; Vertex 3 in

14

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

Figure 2.6 (a) is an isolate vertex. A vertex with degree 1 is called a pendant. Vertex 1 in
Figure 2.6 (b) is such a vertex.

In a digraph (see Figure 2.6 (b)), the indegree of a vertex is the number of arcs (or
edges) coming in to that vertex from others, while the outdegree is the number of arcs
from that vertex to all others. In Figure 2.6 (b), Vertex 2 has indegree 2 and outdegree 1.

A graph is connected if there exists a path from every vertex to every other vertices. A
maximal connected subgraph is called a component. The graph shown in Figure 2.6 (a)
has two components: {1,2,4,5} and {3}. A maximal subgraph is a subgraph that satisfies
some specified property (such as being connected) and to which no vertex can be added

without violating the property.

2.3.3 Matrices

The dependencies depicted by a graph can also be represented by a matrix of appropriate
dimension. The reason of using two different ways, graph and matrix, to represent the same
information is because there is a trade-off. Graphs are more intuitive than matrices but they
can be difficult to understand when the number of nodes and edges grow. A few dozens
nodes can be enough to produce a graph too complex. On the other hand, large and complex

graphs can be very efficiently represented by a matrix.

X=10 00 0 1 (2.1)

In Figure 2.8, we show a DSM considering the example shown in Figure 2.5. Here,

rows _correspond to the caller functions and columns correspond to the callee functions.

15

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

A B C D E
A 1 1 0 0
B 0 0 1 1
C 0 0 0 1
D 1 0 0 0
E 0 0 0 1

Figure 2.8: An example of a DSM

The equivalent matrix representation is presented in Equation 2.1. An entry X;; = 1 means
the function at Row; calls the function at Column;.
If we want the relation in other direction then we can simply transpose matrix X and get

X' (see Equation 2.2). When X is symmetric we have X ' = X.

X"=11000 0 2.2)

In the beginning of this chapter, we have discussed about DSM. A DSM is a square
matrix, which is used to represent the exactly same information that is in the graph or in
the adjacency matrix. In this thesis, we use the duality of a graph and matrix to effectively
represent and compute quantitative information about the architecture of a software system

using:Graph-Theory-and Linear Algebra.

16

www.manaraa.com

Chapter 3

Dependency Analysis

In this thesis our objective is to find out groups of important functions (the relative im-
portance of components in scientific software) where a group contains the most similar
functions. Instead of using clustering algorithms we are using hub and authority ranking
to consider functions in order and then make groups by evaluating their cosine similarity.
Hub and authority ranking (using spectral methods) rely on the eigenvalues of matrix rep-
resentations of networks, and capture global information on structure. In this chapter we

will discuss about HITS method that we have used for our analysis.

3.1 Eigenvalues and Eigenvectors

If A is an n X n matrix, then a nonzero vector x in R” is called an eignevector of A if Ax

is a scalar multiple of x; that is,

Ax =)\x (3.1)

for some scalar A. The scalar A is called eigenvalue of A, and x is said to be an eigen-

vector of A corresponding to A.

1 4 0
For example, vector x = is an eigenvector of A = corresponding to the

2 12 -2

eigenvalue A = 4, since

4 0l 4

12 =2| |2 8

17

www.manaraa.com

3.1. EIGENVALUES AND EIGENVECTORS

To find the eigenvalues of an n x n matrix A, we rewrite Equation 3.1 as Ax = Alx, or as

follows:

(M—A)x=0 (3.2)

Therefore, Equation 3.2 has a nonzero solution if and only if, det (Al —A) = 0.
Here we can discuss these mathematical terms with an example. For simplicity, we

recall the example stated in previous chapter.

A B © D E
A 1 1 0 0
B 0 0 1 1
© 0 0 0 1
D 1 0 0 0
E E 0 0 0 1

(a) (b)

Figure 3.1: An example: a) A Graph, b) An Equivalent Adjacency Matrix or DSM

From example shown in Figure 3.1, we get DSM as Matrix A as following equation:

A=10 0 0 0 1 (3.3)

In Section 3.3, we shall discuss HITS algorithm from [17]. To describe that algorithm

welequite two,specialanatrices By = AAT and B, =ATA, where A" is transpose of Matrix

18

www.manaraa.com

3.1. EIGENVALUES AND EIGENVECTORS

A (Matrix A is a Boolean matrix). In HITS algorithm we are computing the largest eigen-

value and the associated eigenvector of matrices B and B;. These B and B, matrices are

symmetric matrices. Symmetric matrices have real (real number) eigenvalues.

The command [V,A] = eig(B;) in Octave returns diagonal matrix A of eigenvalues and

matrix V whose columns are the corresponding eigenvectors, so that By xV =V %A,

V' =1-0.57735 0.00000 —0.70711

—0.57735 0.00000

00

0

0.00000 —0.00000 0.00000

0.57735 0.00000 —0.00000

0.00000 —1.00000 0.00000

0.70711

2

00O0O03

1.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.81650
0.40825

0.00000

0.40825

(3.4)

(3.5)

Similarly, we compute the matrix of eigenvectors V associated with the eigenvalues A

of matrix B».

19

www.manaraa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

0.00000 1.00000 0.00000 —0.00000 0.00000
—0.70711 0.00000 0.00000 0.70711 0.00000
V'=10.70711 0.00000 0.00000 0.70711 0.00000 (3.6)

0.00000 0.00000 —0.70711 0.00000 0.70711

0.00000 0.00000 0.70711 0.00000 0.70711

The spectrum of the DSM of call graph and the associated eigenvectors can reveal a
wealth of structural information about the underlying network as we demonstrate in this
thesis. The spectral ranking method that is used in this thesis (HITS) is obtained from the

eigenvectors associated with selected eigenvalues of the associated DSM.

3.2 Hub and Authority

In a network, Hubs and Authorities are the two types of important nodes. A dependency
graph also can be considered as a network, where functions are considered as node and their
dependencies are considered as arcs. Hubs are nodes which point to many nodes of the type
important, where authorities are these important nodes. For example, Figure 3.1 shows a
network between five elements where a function is hub if it calls other functions and a
function is authority when it is called by other functions.

From this comes a circular definition: good hubs are those which point to many good

authorities and good authorities are those pointed to by many good hubs [3].

3.3 Hypertext Induced Topic Search (HITS)

Hypertext-Induced Topic Search (HITS) is an algorithm developed by Kleinberg [17],
a professor in the Department of Computer Science at Cornell. This algorithm made use

of the link structure of the web in order to discover and rank pages relevant for a particular

20

www.manaraa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

topic. The HITS ranking relies on an iterative method converging to a stationary solution.
According to Kleinberg, each node in the network i is assigned two non negative weights:
authority weight (x;) and hub weight (y;). Initially, each x; and y; is given an arbitrary
nonnegetive value. Then the weights are updated using Equation 3.7 and Equation 3.8 for

k=1,273,....

A=y ey 3.7)
JDeE

Yy, A (3.8)
j(i)eE

e Update authority weight: Here we use Equation 3.7. In the k" iteration, node i is

assigned a new authority weight, xl(k) which is equal to the sum of y(.k_l)

; where the

sum runs over each node j which points to node i. For all nodes in the graph we use

this step, 1.e. fori = 1,2,...,n (n is the number of nodes in the network).

e Update hub weight: Equation 3.8 will be used here. The new hub weight yl(k) is

(k)

the sum of x;’, where the sum runs over the nodes j to which node i points. This is

repeated for all nodes in the graph.

Note that the hub weights are computed from the current authority weights, where those
authority weights were computed from the previous hub weights.

From the method described above, we observe the natural dependency relationship be-
tween hubs and authorities. y-value (hub) of a node is large, if the node points to many
nodes with large x-values (authorities) and vice versa [18].

We need to normalize all the hub and authority values for all nodes after each iteration

sothat\/ﬂ1 X; —\/):l =

Now, in iteration k for n nodes we can represent hub and authority values in terms of

vectors. If xj represents the vector of authority values and yj represents the vector of hub

values in iteration k, then for n nodes we have

21

www.manaraa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

(3.9)

RJl
|

and

(3.10)

Tl
|

Yi(n)

If kK = 0, then using Equations 3.9 and 3.10 we can initialize xp and yp, as xo(1) =

x0(2) =--- =xo(n) = (1/v/n) and yo(1) = y0(2) = --- = yo(n) = (1//n).
Let A be an adjacency matrix of the directed graph G. Then using Equation 3.11 and

3.12, we can represent the algorithm stated above.

¥o=cA Y (3.11)

ji’k = C;(Afk (3.12)

cx and ¢ from Equation 3.11 and Equation 3.12 respectively are the normalization
constants. In iteration k, these are chosen in a way that the sum of the squares of the
authority weights, as well as that of the hub weights are equal to 1. Considering these

equations we can now represent HITS method using following equations [17]:

22

www.manharaa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

i = cxcl_pA AXyy) fork>1 (3.13)

Vi = crckAA Fg_qy fork >0 (3.14)

Therefore we can say that HITS is an iterative power method to compute the domi-
nant eigenvector for AA" and AT A [10]. Dominant eigenvector is the column of matrix V
(corresponding eigenvector) which corresponds to the eigenvalue.

The hub scores and the authority scores are determined by the entries of the dominant
eigenvector of AAT and A" A respectively [3].

Again, we can consider Figure 3.1 as an example to explain the HITS algorithm, where

the adjacency matrix of that graph is given in Equation 3.3.

Table 3.1: Hub and Authority Ranking (Scores correspond to the dominant eigenvector)

Node | Hub Score | Hub Rank | Authority Score | Authority Rank
A 0.00000 3 0.00000 2
B 0.81650 1 0.00000 2
C 0.40825 2 0.00000 2
D 0.00000 3 0.70711 1
E 0.40825 2 0.70711 1

The eigenvectors of AA " and A" A corresponding to the largest eigenvalue e = 3 (see
Equation 3.5), yield the ranking for hubs and authorities (using HITS algorithm) as shown
in Table 3.1. We observe in Equation 3.5 that the dominant eigenvalue is in column 5 and
hence the 5" column of V in Equations 3.4 and 3.6 are the corresponding dominant eigen-
vectors. We consider these as scores for calculating hub and authority ranking respectively.
Here the ranking of nodes A to E for hubs is {3, 1,2,3,2} and the ranking for authorities is

{2,2,2,1,1}.

23

www.manaraa.com

Chapter 4

Methodology and Results

Many software are usually written by domain experts and address some specific problem.
Most of the time these software do not contain adequate technical documentation for dif-
ferent reasons. So from a usability point of view it may be difficult to detect and retrieve
components that could be reused in other software projects. Analyzing such software are
more challenging for researchers.

In this thesis we analyze the dependencies between functions depicted by static call
graphs to categorize functions into groups of “similar functions” (by using hidden depen-
dencies as described below) according to their “importance” (by spectral ranking the func-
tions using HITS algorithm) in the software system. The hub functions that are categorized
“most important” are the functions that provide core services to its end users. The associ-
ated authority functions represent most important “service providers” to the hub functions.

A Hub function directly partakes in the implementation of core functionality of the
software. Examples of Hub functions in CSparse are cs_lusol (solves a linear system with
unsymmetric coefficient matrix) and cs_Lsolve (solves a lower triangular linear system). On
the other hand, functions that are tasked with providing support services to the software
system are termed Authority functions. Examples of Authority function in CSparse are
cs_realloc (changes size of a block of memory) and cs_done (frees workspace and returns
a sparse matrix).

In a call graph if function i calls function j then we say that i depends on j. This type

of dependency is explicit in that it can be extracted directly from the source code. Suppose,

24

www.manaraa.com

4.1. METHODOLOGY

functions 1 and j both call function k. Intuitively, it means that functions 1 and j are related
in some way (depending on the context). This is an example of “hidden” dependency which
is not discernible from the call graph. We compute this kind of hidden dependencies from
the product matrix B=A*A". A nonzero value of B(i,j) implies a “hidden dependency”
between functions i and j.

In this work we analyze the dependency structures of software (caller-callee relation
between functions) using tool “Understand” [21], and uncover “similarity” among design
elements (functions) using a suitable similarity metric (cosine similarity). Then combined
with the notion of “importance” of design elements [13], we group or cluster the design
elements into “tiers” ranked by their “importance”.

This chapter will discuss the impact of function dependencies on the software architec-
ture as well as the impact of uncovering “similarity” among design elements. Methodology

followed by experimental results of our novel work are also discussed in this chapter.

4.1 Methodology

This section describes the methodology we use in our work. We start this section by
describing the method of dependency extraction followed by building DSM. Using the ana-
lytics tool “Understand” [21] we can view and extract dependency structure of the software.
We extract caller-callee relation between functions to analyze the dependency structures of
programs. The method of finding “importance” of design elements [13] computes hub and
authority rankings which provide lists of important caller (hubs) and important callee (au-
thorities). Then we discuss the method of uncovering “similarity” among design elements.
Our goal is to group or cluster the design elements into “tiers” ranked by their “importance”
which is presented using a pseudocode.

Computational Infrastructure for Operation Research [8] (COIN-OR) is one of the largest
and most widely studied open source communities for scientific research software. We stud-

ied open source software projects from COIN-OR. For example, CSparse and ADOL-C

25

www.manaraa.com

4.1. METHODOLOGY

software implemented in C, will be described briefly in sections 4.2.1 and 4.2.1 respec-
tively. Then results for these software that we got from our experiments will be discussed
in Section 4.3. In the following sections we briefly describe our novel approach considering

these software.

4.1.1 Extracting Dependencies
In Section 2.2, we have given some preliminaries regarding extracting dependencies.
In this section, we discuss how we extract the call dependencies between functions (for
both CSparse and ADOL-C) using the “Understand” SciTool [21]. We have already dis-
cussed this tool in previous section. We can visualize these software (CSparse and ADOL-
C) using Octave. Figure 4.1 and Figure 4.2 show the matrices of CSparse and ADOL-C

respectively plotted using Octave.

0 T T T T T
* . * % * * O :*:i** *
* * * Wk * * kK #* ¥
* * * *
* %k * * n—
of g
* g *
* . *
20 N
* * %
% *x § Fy § ¥ ORK K, *¥
* * *
¥ * Froren
30 *¥ N
¥ . * *
F*x . P T .. *k
*
a0 1
* ow * fFo o N * % owx *
* K, * * ok % Fon * * *
* * ok
50 F .
*
* * . N
%*
* *
60 % N
1 1 1 1 1 1
0 10 20 30 40 50 60

Figure 4.1: Sparse Matrix of CSparse

26

www.manharaa.com

4.1. METHODOLOGY

0 I T T 13 T T T
N L4 ' P 3
1y a -
~h + lj'
R ¥ H
100 - o ' F .
I o ! . T,
. - \'-‘ 3 *h -i' - o
] [
. .] '};\
~ . ¥
200 [N
- Soe— . - TR
. L N ~ . . R " H L3
- . - % - L :l o I
i L 3 -
300 . DAL L % ‘\"" 7
’ ':}-.‘- - !!2‘: .)) B \‘a
& -I L% y |;.- E *I
v L
400 N
500 [N
600 [1 1 1 1 1 L]
0 100 200 300 400 500 600

Figure 4.2: Sparse Matrix of ADOL-C

For extracting the dependencies, first we download the full package (latest release) of
the system software (CSparse and ADOL-C). Then we import the package in “Understand”
SciTool. Then we can visualize call graphs (see Figure 4.3 and Figure 4.4). Then we
inspect each function and observe its detail from the description option. In this description,
we can find the list of functions which are called by that particular function and also a lot

of information. We can also export dependency matrices in different file formats.

4.1.2 Building DSMs

We create DSM with static dependencies. DSM is a visual representation of a system
and in the form of a square matrix. We have investigated CSparse project with 64 functions
and ADOL-C project with 612 functions. Therefore, CSparse has a DSM with 64X 64
matrix and 612X612 DSM matrix for ADOL-C. These matrices are binary because we did

not;considerweighted.matrices. It means, even if a function i calls another function j for

27

www.manaraa.com

4.1. METHODOLOGY

Figure 4.3: Dependency graph of CSparse

more than once, we assume DSM]i, j] = 1.

Figure 4.5 shows the DSM for CSparse. The order of the functions (in rows or columns)
in this 64X 64 binary matrix can be found from Appendix A. We see that, DSM[2,1] = 1,
which means, Function cs_amd calls Function cs_add. The blank cells are considered as 0.

We have similar DSM (612X 612 binary matrix) for ADOL-C too.

28

www.manharaa.com

4.1. METHODOLOGY

Figure 4.4: Dependency Graph of ADOL-C

4.1.3 Computing Hub and Authority Ranking

In Chapter 3, using a small example we have discussed some methods of analysing
dependency between functions. For example, calculating eigenvalue and eigenvector from
given matrix, identifying hubs and authorities and use of HITS method to rank functions.
In this section, we describe the importance and the method of computing hub and authority
ranking for our approach.

For a given Matrix A, HITS algorithm computes two matrices By =AA" and B, =A"A.

Matrices By and B, have important role to compute hub ranking and authority ranking

29

www.manharaa.com

4.1. METHODOLOGY

s
=
ot
o
o
f—
J—
b
s

S|
o™
o

|| o]
=

TP
H
H

Figure 4.5: DSM of CSparse

respectively. Figure 4.6 shows an example of a call graph for which we get,

By =AAT 4.1)

By,=A"TA= 4.2)

Therefore, diagonal value of Matrix B, diag(B1) = [2,1,1, 1] represents outdegree of

the functions and diagonal value of Matrix Ba, diag(B2) = [2,1, 1, 1] represents indegree of

30

www.manharaa.com

4.1. METHODOLOGY

r—tr—tOO}

wilellveie
olo|lo|~|H
olo|~o|T

olo|loi—|0O

Figure 4.6: An Example of Hub and Authority

the functions. Besides, in Equation 4.1 and 4.2, we see some values outside the diagonal
(reported as bold text). Equation 4.1 tells that Function C and Function D have an indirect
relationship though both of them call Function A (Green dot line in Figure 4.6). On the
other hand, Equation 4.2 tells that Function B and Function C have an indirect relationship
though both of them are called by Function A (Blue dot line in Figure 4.6).

So computing matrices By and B, gives semantic dependency relationship where DSM
gives only the syntactic dependency relationship between functions.

Suppose we have build our DSM from the given source code which is A. Now compute
matrices By =AA' and B, =ATA, where A" is transpose of Matrix A.

Then using Octave, we can find diagonal matrix A of eigenvalues and matrix V whose
columns are the corresponding eigenvectors, so that B; *V =V x A, where B; is By and B;.
We look for the dominant eigenvalue of A which holds the highest magnitude of A. The
corresponding column of V is the dominant eigenvector which is considered as the hub
value (for By) and authority value (for B;) [13]. We sort the functions in descending order
according to their values (see Section 3.1) and hence get the authority ranking and hub
ranking of the functions.

In tables 4.1 and 4.2 we have reported 5 topmost authorities and hubs according to their

values for both CSparse and ADOL-C software respectively.

31

www.manaraa.com

4.1. METHODOLOGY

Table 4.1: Hub and Authority rank of first five functions of CSparse project

Rank | Hub | Hub Name | Authority | Authority Name
1 42 | cs_schol 27 cs_malloc
2 44 | cs_sqr 51 cs_calloc
3 37 | es_grsol 57 cs_free
4 28 | cs_maxtrans 53 cs_spalloc
5 29 | cs_multiply 63 cs_sfree

Table 4.2: Hub and Authority rank of first five functions of ADOL-C project

Rank | Hub | Hub Name Authority | Authority Name
1 36 | tape_doc 60 myallocl
2 4 | jacobian 403 fprintf
3 58 | forward 64 my freel
4 29 | inverse_Taylor_prop 329 adolc_exit
5 9 | hessian 61 myalloc?2

4.1.4 Computing Cosine Similarities

Cosine similarity is a metric used to determine how similar the functions are. Math-
ematically, it measures the cosine of the angle between two vectors projected in a multi-
dimensional space. In this context, the two vectors (two rows of DSM) are matrices con-
taining the call information of two functions. When plotted on a multi-dimensional space,
where each dimension corresponds to a function in the system, the cosine similarity cap-
tures the orientation (the angle) of the functions and not the magnitude. The cosine simi-
larity is advantageous because even if the two similar functions are far apart by rankings
they could still have a smaller angle between them. The smaller the angle, the higher the
similarity.

Equation 4.3 gives the cos(0) (cosine similarity) between vectors d@ and b.

ab

[all[|z]

0s(0)

where 7 and b are vectors of the same size, ||@|| and ||b| are the Euclidean norm of these

32

www.manaraa.com

4.1. METHODOLOGY

vectors, and 7 is the size of these vectors and the number of elements in the system.

In our work, DSM contains the call information between functions, where rows are
caller functions (hub) and columns are callee functions (authority). When we compute
cosine similarity between two caller functions, we select two corresponding rows from the
DSM as vectors @ and b. Again, when we compute cosine similarity between two callee
functions, we select two corresponding columns from the DSM as vectors @ and b.

In our approach, we consider DSM as well as B] = AAT (hub)and B, =ATA (authority)
matrices to choose the vectors for similarity check. The importance of matrices B and
B, are discussed in Section 4.1.3, where we have shown that matrices B; and B, contain
more important information than DSM. Therefore, we tested our approach for both type of
matrices.

From Equation 4.3, we observe that to calculate the dot product between two vectors
(02 Zi,-Bi), it calculate sum of the product of corresponding entries of two selected rows or
columns.

We know, cos(0°) = 1 and cos(90°) = 0. Therefore, if two vectors are orthogonal (not
similar) than the value of cos(8) will be 0 and if two vectors are parallel (similar) then the
value of cos(0) will be 1. But if the value of cos(0) is in between 0 and 1 then we can set a
threshold to identify the similarity. In this thesis, we have tested our algorithm for different
threshold value between 0 and 1. For example, 0.0, 0.1, 0.2, ..., 0.9, 1.0.

Besides, we have calculated similarities between functions for hubs and authorities. For
hub, we choose two row vectors from the matrix and for authorities we choose two column
vectors from the matrix.

Now we compute the cosine similarities between first five functions (according to their
rank, see Table 4.1 and Table 4.2) considering both hubs and authorities (for projects
CSparse and ADOL-C).

Table 4.3 and Table 4.4 report cosine similarities between functions, where d and b

represents functions of the projects (see Appendix A and B). Here we get the value of

33

www.manaraa.com

4.1. METHODOLOGY

Table 4.3: Cosine Similarities of First Five Functions (considering Hub and Authority
Rank) of CSparse Project

Hub Functions Authority Functions
a b cos(0) a b cos(0)

cs_schol cs_sqr 0.982167 | cs_calloc | cs_spalloc | 0.873418
cs_sqr cs_maxtrans | 0.798325 | cs_free cs_sfree | 0.861267
cs_schol cs_maxtrans | 0.776425 | cs_malloc | cs_calloc | 0.848427
cs_sqr cs_qrsol 0.722491 | cs_malloc | cs_sfree | 0.678954
cs_schol cs_qrsol 0.696213 | cs_malloc cs_free | 0.674013
cs_maxtrans | cs_multiply | 0.69317 | cs_malloc | cs_spalloc | 0.636215
cs_grsol cs_maxtrans | 0.691092 | cs_calloc | cs_sfree | 0.619324
cs_schol cs_multiply | 0.590327 | cs_calloc cs_free | 0.557076
cs_sqr cs_multiply | 0.577527 | cs_spalloc | cs_sfree | 0.262881
cs_qgrsol cs_multiply | 0.400871 cs_free | cs_spalloc | 0.220262

Table 4.4: Cosine Similarities of First Five Functions (considering Hub and Authority
Rank) of ADOL-C Project

Hub Functions Authority Functions
a b cos(0) a b cos(0)
jacobian hessian 0.953637 | myallocl | myfreel |0.970463
inverse_Taylor_prop hessian 0.89385 | fprintf |adolc_exit|0.944289
Jjacobian inverse_Taylor_prop|0.822776 | myfreel | myalloc2 |0.879903
tape_doc forward 0.68348 | myallocl | myalloc2 |0.865987
Jjacobian forward 0.529026 | myallocl |adolc_exit | 0.359106
forward hessian 0.504676 | myallocl | fprintf [0.317976
forward inverse_Taylor_prop|0.407995 | adolc_exit | myalloc2 |0.243542
tape_doc hessian 0.315302 | myfreel |adolc_exit|0.221187
tape_doc jacobian 0.295122| fprintf | myalloc2 |0.211266
tape_doc inverse_Taylor_prop|0.234508 | fprintf | myfreel |0.190357

cos(0) between 0 and 1. Therefore, by fixing a threshold we can say whether two functions

are similar or not.

4.1.5 The Algorithm

The complete algorithm of our approach to find out similar functions in different tiers

is presented below.

34

www.manaraa.com

4.1. METHODOLOGY

Algorithm 1: Group_Similar_Functions (DSM A)
1 N < Number of functions
2 threshold <+ a numeric value between O and 1
3 k<0 > Number of tiers
4 while N > 0 do
5 h < List of top 5 elements in hub ranking order

6 a < List of top 5 elements in authority ranking order
7 U<«] > U is the list of elements to be removed from A after each iteration
8 fori< 1to5do
9 hub_Similarity[i] < 0 > Store similarity between hub elements from &
10 aut _Similarityli] < 0 > Store similarity between authority elements from a
11 fori< 1to4do
12 for j<—i+1to5do
13 hub_Similarity[i] <— hub_Similarity[i| + cosineSimilarity(hli], h[j])
14 > cosineSimilarity() is a function as Equation 4.3
15 hub_Similarity[j] < hub_Similarity[j| + cosineSimilarity(h[i], h[])
16 fori< 1to5do
17 hub_Similarity[i] < hub_Similarityli] /4 > Calculating average similarity
18 k<« k+1
19 fori< 1to5do
20 if hub_Similarity[i] >= threshold then
21 Include Ali] in T}
22 U < UUh]i]
23 fori< 1to4do
24 for j«—i+1to5do
25 aut _Similarityli| <— aut Similarity[i] + cosineSimilarity(a[i],a[j])
26 aut _Similarity| j| < aut _Similarity[j| 4 cosineSimilarity(ali],a[j])
27 fori< 1to5do
28 aut _Similarity|i] <— aut_Similarity[i] /4 > Calculating average similarity

29 k< k+1
30 fori< 1to5do

31 if aur_Similarity[i] >= threshold then
32 Include ai] in Tj
33 U «+ U Uali]

34 Remove all i € U from A
35 N« N—|U|

36 return 11,75,...,1; > T; is a tier containing similar functions

In this algorithm, DSM A is the input and a list of tiers having similar functions are
the output (71,73, ...,T). threshold is a predefined numeric value between 0 and 1. In

Section 4.1.3, we discussed how do we compute hub and authority ranking of the functions.

35

www.manaraa.com

4.2. SETTINGS

Following the same method, in Step 5, we get a list (k) of top 5 functions according to hub
ranking and in Step 6, we get a list (a) of top 5 functions according to authority ranking.
Now we describe how do we compute hub tiers. In steps 11 to 15 we calculate cosine
similarity between these 5 hub functions as described in Section 4.1.4. Then we compute
the average similarity of each hub functions in Step 17. In Step 20, the algorithm checks
whether the average similarity of function A[i] (i.e. hub_Similarityli]) is greater or equal to
the predefined threshold or not. If it satisfies the condition, then the function is included
in tier 7, and also stored in U to be removed from Matrix A after the current iteration;
otherwise, it does nothing to that function. Similarly, for authority tiers, we followed steps
23 to 33. Therefore, in one iteration of the while loop, we compute two tiers, one for the
hub and one for the authority. The algorithm continues until there is no functions or no such

tier can be computed with our set conditions.

4.2 Settings

This section brings details about the study settings we use in our work. Here we discuss

our target systems and selection of thresholds for our experiments.

4.2.1 Target Systems

For our experiment, we select two software implemented in C/C++, CSparse version
5.6.0 and ADOL-C version 2.7.2. These scientific software are used to compute accurate
(upto machine precision) numerical derivatives of the function program at a specified point.

CSparse software is concerned with solving system of linear equation Ax = b where the
coefficient matrix A is sparse [6].

On the other hand, ADOL-C is a software system to compute mathematical derivatives

(gradient, Jacobian, Hessian, Taylor coefficients) of a mathematical function [12].

36

www.manaraa.com

4.2. SETTINGS

CSparse

CSparse 1s a project which contains direct methods for sparse linear systems. There are
many problems in computational field which deals with solution of sparse systems of linear
equations. To solve these problems efficiently, we require an in-depth knowledge of the
underlying theory, algorithms, and data structures found in sparse matrix software libraries.
CSparse presents the fundamentals of sparse matrix algorithms to provide the requisite
background [6]. This project is downloadable sparse matrix package that illustrates the
algorithms and theorems presented in [6]. To work with this project user must have some
knowledge on larger and more complex software packages and also a strong idea on MAT-
LAB and the C programming language. To understand more about this project (Sparse
Linear Systems), we suggest to get idea from [6].

The functions are categorized by the author of the software as: primary, primary utility,
secondary, secondary utility, tertiary and tertiary utility [6]. In this thesis, we have analyzed

64 (C) functions from CSparse package (see Appendix A).

ADOL-C

ADOL-C software is implemented in C/C++ [12]. This package facilitates the evaluation
of first and higher derivatives of vector functions written in C/C++. Using C, C++, Fortran,
or any other language that can be linked with C, anyone can use all routines in this package.

Error free numerical values of derivative vectors can be calculated with an efficient run-
ning time and small space by the given function evaluation program. Derivative matrices
are obtained by columns, by rows or in sparse format. For solution curves defined by ordi-
nary differential equations, special routines are provided that evaluate the Taylor coefficient
vectors and their Jacobians with respect to the current state vector. For explicitly or im-
plicitly defined functions derivative tensors are obtained with a complexity that grows only
quadratically in their degree. The derivative calculations involve a possibly substantial but

always predictable amount of data. Sequentially this data is accessed and hence it can be

37

www.manaraa.com

4.3. RESULTS

automatically paged out to external files.
In our thesis, we have analyzed 612 functions (implemented in C) from ADOL-C pack-

age (see Appendix B).

4.2.2 Selection of the Threshold

In Algorithm 1, we have talked about a threshold (Step 2 in Algorithm 1), which helps
to decide whether a function should be included in the tier or not (steps 20 and 31). The
value of threshold should be chosen in between O and 1, because we know that the value
of cos(0) varies from O to 1. In this thesis, the value of cosine similarity (cos(6)) cannot be
negative because the vectors are positive. Since the vectors are selected from dependency
matrix (dependency cannot have negative value), the vectors will always lie in the first
quadrant. Two functions are more similar if their cos(0) value is close to 1. (Note: If two
vectors are similar or parallel it means their angle is 0°, hence cos(0°) = 1). On the other

hand, if cos(0) value between two vectors is close to 0, then they are more dissimilar.

4.3 Results

In this section, we provide results from numerical experiments on selected projects. The
software for the experiments is obtained from Computational Infrastructure for Operation
Research (COIN-OR) [8]. The experiments were performed using a PC with 3.4 GHz Intel
Xeon CPU, 8 GB RAM running Linux. The implementation language was GNU Octave
and the code was compiled with version 4.2.2 compiler.

Test results for the selected test package CSparse are reported in figures 4.8, 4.9, 4.10
and 4.11. Here, figures 4.8 and 4.9 show results (functions of different tiers) where we
considered DSM to choose functions for their similarity check. On the other hand, tables
4.10 and 4.11 show results where we considered AA" and A"A (for hub and authority
respectively) to choose functions for their similarity check. In the following section we

discuss these results to validate our approach.

38

www.manaraa.com

4.3. RESULTS

Similarly, test results for the selected software ADOL-C are reported in figures 4.12,
4.13, 4.14 and 4.15. Here, in all cases we considered matrices AA" and ATA (for hub and
authority respectively) to choose functions for their similarity check. We reported results
separately for threshold = 0.4 in figures 4.14 and 4.15.

Now we discuss the results for software ADOL-C. Figures 4.12 and 4.14 show that for
different threshold values we get different number of tiers for hub functions. Again, figures
4.13 and 4.15 show that for different threshold values we get different number of tiers for

authority functions.

4.3.1 Discussion

Figure 4.7: DSM of CSparse with provided partitions [6]. Primary, Primary Utility, Sec-
ondary, Secondary Utility, Tertiary and Tertiary utility are marked by red, purple, green,
yellow, blue and brown colors respectively.

Figure 4.7 is the DSM which represents the partition provided in [6]. Here, the partitions
are primary (red color), primary utility (purple color), secondary (green color), secondary

utility (yellow color), tertiary (blue color) and tertiary utility (brown color). We see that

39

www.manaraa.com

4.3. RESULTS

Threshold
Hub tiers 0.3 0.4
Name Category Name Category
cs_schol Secondary cs_schol Secondary
1 cs_sar Secondary cS_sqr Secondary
€s_maxtrans Tertiary
cs_qrsol Primary cs_qrsol Primary
2 cs_cholsol Primary
cs_lusol Primary
cs_multiply Primary cs_multiply Primary
cs_add Primary cs_add Primary
3 cs_lu Secondary cs_transpose Primary
cs_qr Secondary CcS_symperm Secondary
CcS_symperm Secondary CS_compress Primary
cs_dmperm Secondary
4 cs_amd Secondary
cs_dropzeros Secondary
cs_droptol Secondary
cs_post Tertiary
5 cs_counts Tertiary
cs_etree Tertiary

Figure 4.8: CSparse, Tiers of Hub Functions functions are selected from DSM

Threshold
Authority tiers 0.3 0.4
Name Category Name Category
cs_malloc Primary_Util cs_malloc Primary_Util
1 cs_calloc Primary Util cs calloc Primary_Util
cs_sfree Secondary_Util
cs_free Primary_Util cs_free Primary_Util
cs_transpose Primary cs_nfree Secondary Uil
2 cs_spfree Primary_Util cs_ipvec Secondary
cs_nfree Secondary_Util cs_sfree Secondary_Util
cs_ipvec Secondary
cs_spalloc Primary Util cs spalloc Primary Util
3 cs_done Tertiary_Util cs_done Tertiary _Util
cs_sprealloc Primary_Util
cs_scatter Tertiary
cs_fkeep Tertiary cs_spfree Primary_Util
cs_ddone Tertiary_Util cs_ddone Tertiary_Util
4 cs_dalloc Tertiary_Util cs_dalloc Tertiary_Util
CS_scC Tertiary
cs_pinv Secondary

Figure 4.9: CSparse, Tiers of Authority Functions functions are selected from DSM

40

www.manaraa.com

4.3. RESULTS

the primary, secondary and tertiary functions mostly call other functions. According to
HITS method [17], these functions are important hubs. On the other hand, we observe that
utilities are mostly called by other functions and according to HITS method these can be
considered as authorities.

Figures 4.8 and 4.10 show that for different threshold values we get different number
of tiers for hub functions. These tiers also match with the category given in CSparse. For
example, in Figure 4.8, Hub Tier 5 contains three functions: cs_post, cs_counts and cs_etree
which are categorized as tertiary functions in [6] (see Figure 4.7).

Similarly, figures 4.9 and 4.11 show that for different threshold values we get different
number of tiers for authority functions. These tiers also match with the category given in
CSparse. For example, in Figure 4.9, Authority Tier 1 contains three functions: cs_malloc,
cs_calloc and cs_sfree which are categorized as utility functions in [6] (see Figure 4.7).

Hence our method produces a good approximation of author’s partition.

41

www.manaraa.com

4.3. RESULTS

| VV WOIj PIJOSas a1k suonouny suonoung qny Jo s1diy, ‘sxeds) 0 m31g

fenal EET) =] Arenial =5T) =]
Aema) SJUNOY 592 Aremwa] SUNoY S92
Aema) 1sod s2 Aremwa] 1s0d S0 S
Arepuooes pLE s2 Arepuooas purE s2
Arewud peo| S92
Arepuodasg ainwad so
Arepuosasg |[oyo so v
Arepuooas wiedwp s Arepuosasg b so
Arepuooss amnwiad s2 Arepuooses ogimwad s2
N Asepuosas EETT TR Arewud ppPe s2 Arwud 2'ppE S92
Aruwid |dnp~so Arepuosasg wiadwAs so Arepuooss owiadwis sa c
Aruwid josn| s2 Aruwiud ssaidwoa so Arwind 2'ssaudwod s2
Aruwid jos|oys so Arepuooas wiedwp s2 Arwid asodsuen so Arwud 2-asodsuenr s
Arwud ssaxdwoa so Arepuooss n| s Aeal 1sod s2 faeal o'1sod s2
Arepuosas wiiadwAs s2 Arepuodas wiiadwAs s2 Aeay SUNoY” 52 femal 2°SUNOY” S0
Aruwid asodsuen so Areuwud ssaudwod s2 Aremwa] 205 S0 Aema 2°005 SO z
Aruwid ppe so Areuwud asodsuen so| Amepuosas puE s3 Arepuooss opuwe s
Arwud Adiynw™ s2 Arewnd ppe s2 Aepuoosss wiedwp s2 Arepuooses owedwp s
Arewd Adiynw—s2 Areuwud Adiymw—so Aruwd o Kdiynwso
fenal suenXew” s Arenial SUBXEW S0 Aenial suenxew” sa el JsuBnXew” s2
Arema suenxew so Aruwid josibh s2 Areuwud josib so Aruwiud josib s2 Arwind ojosih sa T
fepuooss Ibs s2 Arepuooes lbs s2 Arepuooss Ibs so Arepuooss Ibs s2 Arepuooses olbs so
fepuooss |oyos so Arepuooes |oyos s2 Arepuooss |oyos s2 Arepuooss |oyos s2 Arepuooses J’|oyas s2
Alofamed awen AioBame) aweN Alofared awep AioBamen aweN AioBaren auen
L0 90 0 v'0 £0 ane

ploysaIy L

42

www.manaraa.com

4.3. RESULTS

V| ¥ WOIJ Pajoo[as are suonouny suonoun Ljuoyiny Jo siory, ‘osredg) 114 Indig

Arepuoosg Addey sa
Amrnis) asnoy s2 g
nn Arens| auopu” S92
nn Arwud | cojesids so g
N Arens] | 20|Ep S2
N Arenis] | auopp SO
mnn Arewud salds so Amenis| sipl S92 v
Arenisl deay s2 nn Arenep auopl s2
InN Arepuodss| 834U SD NN Arenisl o0|[ep S3
Arepuodss Jand s2 nn Arenis| auopp” s2 Arenis) Ia1eos so
Arepuoosg anNos| s2 nn Arewud salds s2 Arens| lameos s2 Amenis| WNSWN2™ s2 €
mnn Arewud 29l s2 Arenis) doayy so nn Arenis| auop” s2 nn Arensp auop S92
Alepuoodssg anjos) so
Amenis] wnswna sa| Amepuosss sand S92
N Arepuooss| sa4u SO Amrenis) la1eas sa | N Aepuodas | sayu s2 | N ABpuoodss | Ssuu SO nn Akpuoodss | S84U SO Z
Aepuodsg Jsandl s2 nn Arens| auop™ s2 Alepuoodssg n so Alepuodssg n so Alepuoodeg ny sa
N Arepuoossg| @84S SO nn Arewud | oojeds so Arepuoossg anjosn so Arepuoosg anjosn so Alepuoosg anjosn so
nn Amrepuodses | 8sys so nn Amrpuoosss | @als s2
N Arepuoodss | S84s S92 nn Arewud oo|eds s2 mnn Arewud 20|eds s2
nn Amrpuosss| 83ls S2 nn Arewud 29l s2 nn Arewud 29l s2 mnn Amrwud 33l s T
nn Arewud 20|22 S92 mnn Arewud 20|20 S92 nn Arewud 20|[e2 S92 nn Arewud 20|[e2 S92 mnn Arewud 0|2 S0
N Arewud oojlew s2 | [Arewnd Jojjew” s N Arewud o0j[ew” s N Arewud Jo[ew” s9 N Arewud oojfew s3
fiobaren alleN AoBame) alleN fobamen alen fobamen alleN fofamen almen
L0 90 50 0 £0 Aoy

ploysau|

43

www.manaraa.com

4.3. RESULTS

Hub Threshold
tiers 0.3 0.5
tape_doc jacobian
jacobian forward
1 forward inverse_Taylor_prop
inverse_Taylor_prop hessian
hessian
operator + tape_doc
operator / filewrite_start
2 operator * grow
operator - reverse
operator < hov_ti_reverse
inverse_tensor_eva operator +
jac_solv pow
3 tensor_eval operator /
hov_ti_reverse operator *
read_params operator -
ADTOOL_AMPI_popGSVinfo filewrite_ampi
ADTOOL_AMPI_popReducelnfo filewrite
4 ADTOOL_AMPI_popGSinfo filewrite_end
put_op reserve
openTape jac_solv
initNewTape inverse _tensor_eva
5 filewrite_start tensor_eval
init_rev_sweep
getTapelnfos
sparse_jac
6 bit_vector_propagation
sparse_hess

Figure 4.12: ADOL-C, Tiers of Hub Functions functions are selected from AAT

44

www.manharaa.com

4.3. RESULTS

Authoarity
tiers

Threshold

0.3

0.5

myallocl
fprintf
myfreel
adolc_exit
myalloc2

myallocl
myfreel
myalloc2

loc
next_loc
ADOLC_PUT_LOCINT
put_op
ADOLC _PUT_VAL

adolc_exit
malloc

free
malloc
MINDEC

loc
next_loc
ADOLC_PUT_LOCINT
put_op
ADOLC PUT_VAL

TAPE_AMPI_read MPI_Comm
allocatePack
TAPE_AMPI_read_MPI_Datatype
TAPE_AMPI_read_int
unpackDeallocate

myfree2
myfree3
myalloc3
spreadl
hos_forward

fail
begin

end
empty

Figure 4.13: ADOL-C, Tiers of Authority Functions functions are selected from A ' A

45

www.manharaa.com

4.3. RESULTS

For Threshold = 0.4
t}iJlel:Ps Functions tli—lel:g Functions
jacobian init_rev_sweep
1 forward 7 init_for_sweep
inverse_Taylor_prop put_op_reserve
hessian get op block_f
operator + 8 reg_ext fct
operator / reg_timestep_fct
2 operator * cp_fov_reverse
operator - cp_fos_reverse
operator < 9 function
inverse tensor_eva vec_jac
jac_solv gradient
3 tensor_eval readConfigFile
hov_ti_reverse close tape
read_params 10 filewrite_end
tape_doc cleanUp
ADOLC TLM_AMPI_Bcast taylor_close
4 ADOLC TLM_AMPI_Allgatherv lie_covector
ADOLC_TLM_AMPI_Scatterv lie_gradientcv
ADOLC_TLM_AMPI_Gatherv 11 lie_bracket
ADTOOL AMPI_popGSVinfo reverse
5 ADTOOL_AMPI_popReducelnfo large_jacobian
ADTOOL _AMPI_popGSinfo grow
openTape free_loc
initNewTape 12 |ADTOOL_AMPI_copyActiveBuf
6 filewrite_start ensure_block
getTapelnfos ADTDDL_AME’IIJTaII ocateTemp

Figure 4.14: ADOL-C, Hub Functions are selected from AAT, threshold = 0.4

46

www.manharaa.com

4.3. RESULTS

For Threshold = 0.4
Alitig?;'ty Functions Al{tig?;'ty Functions Al{tig?;'ty Functions
myallocl begin fclose
fprintf 6 end strlen
1 myfreel empty 1 strcmp
adolc_exit fail clearTapeBaseNames
myalloc2 7 fread strncpy
loc fseek BW_AMPI_Barrier
next_loc fopen 12 BW_AMPI_Wait
2 ADOLC_PUT_LOCINT cp_hov_forward; BW_AMPI_Recv
put_op cp_fov_forward BW_AMPI_Send
ADOLC_PUT_VAL 8 cp_hos_forward assert
free dummy emplace_front
edfoo_iarr_wrapper_fov_| 13
3 malloc réverse erase_after
MINDEC spreadl before begin
TAPE_AMPI_read_MPIT_ ackl edfoo_iarr_wrapper_zos_|
Datatype 5 P . forward
TAPE_AMPI_read_int z0s_forward edfoo_iarr_wrapper_func
TAPE_AMPI_read_MPI_ edfoo_iarr_wrapper_fov_
4 Comm pack2 forward
allocatePack cp_hov reverse edfoo_vwa;?ggr_fw_reve
14
unpackDeallocate cp_hos_reverse edfoo_maeggr_fos_reve
myfree2 cp_fos_forward
myfree3 10 edfoo_iarr_wrapper_fos_
5 reverse
edfoo_iarr_wrapper_fos_
myalloc3 forward
hos_forward

Figure 4.15: ADOL-C, Authority Functions are selected from ATA, threshold = 0.4

47

www.manharaa.com

Chapter 5

Summary and Future Work

In this thesis we have presented an approach to group or cluster the design elements of
scientific software into “tiers” ranked by their “importance”. First we have analyzed the
dependency structures of software using tool “Understand” and built DSM. The DSM of
the call graph provides a convenient tool so that linear algebraic techniques can be applied
to identify important callers and callees through the calculation of matrix exponential. Us-
ing the notion of “importance” of design elements [13], we ranked those design elements.
Then we uncovered “similarity” among design elements. Finally, using the “similarity”
among design elements, we group them into tiers. Besides using only DSM, we also used
matrices B =AA ' and B, = A A to choose functions which have semantic dependency re-
lationship between functions. We applied our algorithm on CSparse and ADOL-C software
implemented in C.

Using our algorithm, we can categorize all important functions of the system. This
category helps the user of the system to identify their usable functions (hubs). A good
system needs to be updated regularly. But for variety of reasons legacy software may not
contain adequate technical documentation so that from a usability point of view it may be
difficult to detect and retrieve components that could be reused in other software projects.
Therefore using our approach a developer of a system can identify important authority
functions which are called by important hubs. This finding suggests that the analysis of
different tiers of functions of a software system might serve as guidance to developers in

the challenging task of redesigning a software by detecting and retrieving components that

48

www.manaraa.com

5. SUMMARY AND FUTURE WORK

could be reused in other software projects.

In terms of further research, we would like to include more test problems of larger
networks. It would be interesting to include problems from different scientific domain, for
example, SNAP and DIMACSI10 to identify groups of important nodes. In this research
we have considered unweighted matrices because to identify similarity we needed only
information about dependency. For further research, we can compare our algorithm for both
weighted and unweighted matrices. Also, in future, we would like to apply our method to
software library of legacy code, where very little or no documentation is available about the

project. The method that we developed in this thesis is likely to be useful for these types of

library.

49

www.manharaa.com

Bibliography

[1] Lazima Ansari, Shahadat Hossain, and Ahamad Imtiaz Khan. DSMDE: A data ex-
change format for design structure models. Sustainability in Modern Project Man-

agement: Proceedings of the 18th International DSM Conference, pages 111-121,
2016.

[2] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2e.
Addison Wesley, 2003.

[3] Michele Benzi, Ernesto Estrada, and Christine Klymko. Ranking hubs and authorities
using matrix functions. Linear Algebra and its Applications, 438(5):2447-2474, 2013.

[4] Dan Braha and Yaneer Bar-Yam. The statistical mechanics of complex product de-
velopment: Empirical and analytical results. Management Science, 53(7):1127-1145,
2007.

[5] Jonathan J Crofts and Desmond J Higham. A weighted communicability measure
applied to complex brain networks. Journal of the Royal Society, Interface, 6(33):411—
414, 2009.

[6] Timothy A. Davis. Direct methods for sparse linear systems (fundamentals of algo-
rithms 2). SIAM, 2006.

[7] Steven D Eppinger and Tyson R Browning. Design structure matrix methods and
applications. MIT press, 2012.

[8] John Forrest, Ted Ralphs, Stefan Vigerske, Lou Hafer, Bjarni Kristjansson, jpfasano,
Edwin Straver, Miles Lubin, Gambini Santos, rlougee, and Matthew Saltzman. coin-
or/cbc: Version 2.9.9, July 2018.

[9] Linton C Freeman. conceptual clarification.” social networks. “Centrality in social
networks, 1(3):215-239, 1978.

[10] Gene H Golub and Charles F Van Loan. Matrix computations. JHU Press, 3, 2012.

[11] Marco A. Gonzalez. A new change propagation metric to assess software evolvability.
PhD thesis, University of British Columbia, 2013.

[12] Andreas Griewank, David Juedes, and Jean Utke. ADOL-C: a package for the auto-
matic differentiation of algorithms written in c/c++. ACM Transactions on Mathemat-
ical Software, 1996.

50

www.manaraa.com

BIBLIOGRAPHY

[13] S Hossain, SF Khan, and R Quashem. On ranking components in scientific software.
In DSM 2015: Modeling and managing complex systems-Proceedings of the 17th
International DSM Conference Fort Worth (Texas, USA), 4-6 November 2015, pages
245-254, 2015.

[14] Shahadat Hossain et al. Efficiently computing with design structure matrices. In
DSM 2010: Proceedings of the 12th International DSM Conference, Cambridge, UK,
22.-23.07. 2010, pages 345-358, 2010.

[15] Shahadat Hossain and Ahmed Tahsin Zulkarnine. Design structure of scientific
software—a case study. In DSM 2011: Proceedings of the 13th International DSM
Conference, pages 129-141, 2011.

[16] D. Kelly and R. Sanders. Assessing the quality of scientific software. in Proc of
the First International Workshop on Software Engineering for Computational Science
and Engineering, 2008.

[17] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604—632, 1999.

[18] Anany V Levitin. Introduction to design & analysis of algorithms: For anna university,
2e. Pearson Education India, 20009.

[19] Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015-1030, 2006.

[20] M. W. Maier, D. Emery, and R. Hilliard. Software architecture: introducing ieee
standard 1471. Computer, 34(4):107-109, 2001.

[21] Scientific Toolworks Inc. Scitools: Understand. https://scitools.com/.

[22] Alexandru Telea, Hessel Hoogendorp, Ozan Ersoy, and Dennie Reniers. Extraction
and visualization of call dependencies for large C/C++ code bases: A comparative
study. In Proceedings of the 5th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis, VISSOFT 2009, Edmonton, Alberta, Canada,
September 25, 2009, pages 81-88. IEEE Computer Society, 2009.

51

www.manaraa.com

Appendix A

List of Functions of CSparse

NE%CII:)%r Function Name Nﬁomdbeer Function Name Nﬁg'\dbeer Function Name
1 cs add 23 |cs _Isolve 45 |cs_symperm
2 cs_amd 24 [cs_ltsolve 46 |cs_tdfs
3 cs_chol 25 cs lu 47 |cs_transpose
4 cs_cholsol 26 |cs_lusol 48 |cs_updown
5 CS_compress 27 |cs_malloc 49 |cs_usolve
6 Cs_counts 28 |cs_maxtrans 50 |cs_utsolve
7 CS_cumsum 29 cs_multiply 51 |cs calloc
8 cs_dfs 30 |cs_norm 52 |cs_done
9 cs_dmperm 31 [cs_permute 53 |cs_spalloc
10 |cs droptol 32 |cs_pinv 54 |cs_sprealloc
11 |cs_dropzeros 33 [cs_post 55 |cs_spfree
12 |cs_dupl 34 |cs_print 56 |cs_ndone
13 [cs_entry 35 [cs_pvec 57 |cs_free
14 |cs _ereach 36 [cs gr 58 |cs_idone
15 [cs_etree 37 [cs_grsol 59 |cs_dalloc
16 |cs fkeep 38 |cs_randperm 60 |cs _ddone
17 |cs_gaxpy 39 |cs_reach 61 |cs_dfree
18 |cs happly 40 |cs scatter 62 |cs_nfree
19 |cs_house 41 |cs_scc 63 |cs_sfree
20 |[cs_ipvec 42 |cs_schol 64 |cs realloc
21 cs_leaf 43 |cs_spsolve
22 |cs_load 44 |cs sqr

Figure A.1: List of Functions of CSparse

52

www.manaraa.com

Appendix B

List of Functions of ADOL-C

No Name No | Name No Name No Name No Name

1 |function 31 [iensor_eval 61 |myalloc2 91 operator >> | 121 |logl0

2 |gradient 32 hilewrite_stan 62 |myalloc3 92 operator++ | 122 |sinh

3 |vec_jac 33 [filewrite 63 |myfree3 93 operator-- 123 |tanh

4 |jacobian 34 [ilewrite_ampi 64 |myfreel 94 operator += | 124 |cell

5 |large_jacobian 35 hnewme_end 65 |myfree2 95 operator-= | 125 |floor

6 |jac_vec 36 [tape_doc 66 |myfreel2 96 operator *= | 126 |asinh

7 |hess_vec 37 |ie_scalarcv 67 |myallocl2 97 operator /= | 127 |acosh

8 |hess_mat 38 |ie_scalarc 68 |myallocl_uint 98 operator!= | 128 |atanh

9 |hessian 39 l|lie_gradientcv 69 |myallocl_ulong 99 operator == | 129 |erf

10 |hessian2 40 l|ie_gradientc 70 |myalloc2_ulong 100 operator <= | 130 |fabs

11 |lagra_hess_vec 41 |ie_covector 71 |myfreel_uint 101 operator >= | 131 |fmin

12 [forodec 42 lie_bracket 72 |myfreel_ulong 102 operator > 132 |fma><

13 |forodec_ 43 l|lie_scalar 73 |myfree2_ulong 103 operator < 133 |Ide>(p

14 |accodec_ 44 ie_gradient 74 |condassign 104 operator + 134 |frexp

15 |abs_normal 45 Jjac_pat 75 |condeqgassign 105 operator - 135 |myquad

directional_aclive_grad

16 |ient 46 [absnormal_jac_pat 76 |initinternal 106 operator * 136 |operator >>

17 [abs_normal_ 47 |generate_seed_jac 77 |adouble 107 operator / 137 |adubref

18 |freecoefflist 48 |hess_pat 78 |~adub 108 recipr 138 |adub

19 |tensorpoint 49 |generate_seed_hess 79 |adubp_from_adub 109 exp 139 |blocker

20 |tensorsetup 50 |deepcopy_HP 80 |getvalue 110 log 140 |nondecreasing

operator double

21 |freetensorpoint 51 |sparse_jac 81 |const& 111 sqrt 141 |operator]]

22 |freetensor 52 [sparse_hess 82 |operator double&& 112 cbrt 142 |lookupindex
adolc_vec_cop

23 |summand 53 [set_HP 83 |operator double 113 sin 143 |y

24 |coeff 54 |get HP 84 |setValue 114 cos 144 |adolc_vec_dot
adolc_vec_axp

25 |tensor_address 55 |bit_vector_propagation| 85 |operator = 115 tan 145 |y

26 |LUFactorization 56 [freeSparseHessInfos 86 |declarelndependen 116 asin 146 |deallocate

ADOLC_get_sparse_] unpackDealloc

27 |Gausz Solve 57 |acobian 87 |operator <<= nv acos 147 |ate
ADOLC_TLM_]

28 |jac_solv 58 [forward 88 |operator >>= 118 atan 148 |nit
ADOLC_TLM_

29 |inverse Taylor prop 59 [reverse 89 |declareDependent 119 atan2 149 |AMPI_Send
ADOLC TLM

30 |inverse_tensor_eva 60 |myallocl 90 |operator =< 120 pow 150 |AMPI_Recv

Figure B.1: List of Functions of ADOL-C

53

www.manaraa.com

B. LIST OF FUNCTIONS OF ADOL-C

No Name No Name Mo Name No Name No Name
[EiERTIeT
IDOLC_TLM_AMPILIs ADTDDL _AMPI_pop_ | commonPr
151 j=nd 101 (AMPI_Request 211 |Duffer 241 bor 271 |ros_forward
Rl ext_ict
IWDOLC_TLM_AMPI_Ir IWOTOOL_AMPI_push pommanFa
152 |lecv 182 | request 212 |SubBuffer 242 Et 272 |hov_forward
ROOCC_TCWM_ARMPT_ ADTOOL_AMPT_posn TEl_exi_an
153 [Wait 183 | comm 213 [zeroAll 243 Fich 273 [fov_forward
EdIO0_wrap
IWDOLC_TLM_AMPI_B IWDTOOL_AMPI_pack |:|er fanctio
154 lamier 184 DType 214 lappend 244 274 |hos_ti_reverse
-:mcu Wrap
IADOLC_TLM_AMPI_G IWOTOOL_AMPI_unpa per_fov_for
155 |ather 185 \ckDType™ 215 jgetElement 245 ward 275 [fos_reverse
Edioo_wrap
IADOLC_TLM_AMPI_S IWDTOOL_AMPI_getAd) per_zos_far
156 |catter 186 |jointCount 216 freg_fimestep_fct 245 lvar 276 [fov_reverse
[BOTOUL_ANMPT_Setad EOT0O_wrap
IADOLC_TLM_AMPLA %mntCﬂunmndTempBu per_fos_for icallHandleRevers
157 |ligather 187 217 [checkpointing 247 \ard 277 e
T _WrEp
WDOLC_TLM_AMPILG ADTDDL AMF‘I _alloca) per_fos_rev icallHandle Forwar
158 jatherv 188 teTempBut 218 jget cp_fct 248 ErsE 278 d
T _WIap
IWDOLC_TLM_AMPI_S IWDTOOL_AMPI_relea » per_fov_rev)
159 [cattery 189 seAdjointTempBuf 219 |init_edf 249 ErsE 279 |callHandle Primal
TR _ 1T
IWDOLC_TLM_AMPI_A WOTOOL_AMP|_alloca Wwrapper_fu -
160 Jigatherv 190 {te TempAcCtv eBuT 220 [cp_zos_forward 250 nction 280 |initTape
Edion_iar
WDOLC_TLM_AMPIR IWOTOOL AMPI_copy wrapper_fo
161 feduce 191 |ActiveBuf™ 221 |revolve_for 251 h_forward 281 |freeTape
Edi00_iam
IADOLC_TLM_AMPI_A IWOTOOL_AMPI_setup Wrapper_zo
162 [lreduce 192 [Types 222 |cp_fos_reverse 252 E_forward 282 |medifddHandle
Edfoo_iarm
IWDOLC_TLM_AMPI_B WOTOOL_AMPI_clean wrapper_fo o
163 [cast 193 upT}'pes 223 [cp_fov_reverse 253 E_forward 283 |medilnitTape
tﬂ"e Edion_iar
) ADTDDL_ PI_FW_r wrapper_fo o
164 AMPI_Init NT 194 awTyge 224 [cp_clearStack 254 E_reverse 284 |medilnitSiatic
Ll L3\ AL
IADTOOL_AMPI_puszh ADTDDL F'I _BW _r wrapper_fo
165 |[Bcastinfo™ 195 lawType — 225 |cp_takeshot 255 h_rewverse 285 |addHandle
ROTOOL_AMPT_popE
166 jcastinio 196 |AMPI_Send 226 [cp_restore 256 fteration 286 |pdouble
DT OO _ AR PT_TIoE M_Z05_1OTwW
167 |DoubleAmay 197 |JAMPI_Recw 227 |cp_taping 257 fn 287 |mkparam
DT OO _AMPT_TopD TT_TO%_TOTW
168 jpuble Amray 198 |AMPI_lsend 228 [cp_release 258 s 288 |mkparam_idx
EOTOUL_AMPT_push [_T05_Teve -
169 [Reducelnio 199 |AMPI_Irecw 229 frevohlveEmor 259 ISE 289 |adjust
IWDTOOL_AMPI_popR
170jeduceCountAndType | 200 AMPI1_Wait 230 jedf_zero 260 Fo_ieration | 290 frevolve
POT OO _ AP opR TS _forweErd
171 jeduceinfo 201 |AMPI|_Bamer 231 jreg_ext_fct 261 part 291 pl_malloc
DT CORCr A P s e _exXT_ICT e T IOTWET
172|5Rinfo 202 |AMP1_Gather 232 Jory 262 | part 292 |mpl_calloc
EOTOOL_AMPT pops 0%_Torwar
173 |Rinfo 203 |AMP1_Scatier 233 [call_ext fct 263 _partx 293 |pl_realloc
EOTOUL_AMPT_push - OV _TOTWard GIODalTapevarss)
174 |GSinfo 204 |AMPI_Aligather 234 jget_ext_diff fct_v2 264 part 294 L
PEOT OO _ AP s
ScommSizeForRootOr ledioo_v2_wrapper_f how_forwar
175 |Mull 205 |AMPI_Gathen 235 Junction 265 O_partc 295 ffree_loc
DT OO _ARTP T oG [T _V 2 _WIEppeT_2 O5_TEvETS
176|Sinfo 206 |AMPI_Scatieny 236 |os_forward 266 E 296 |nexi_loc
IEOTOOL_AMPT_push [Edin0_VZ_Wiapper_T OV_TEvers
177 |G5Vinfo 207 |AMPI_Aligatherv 237 jos_forwand 267 E 297 |ensure_block
RO TOROL_AMPT_popG [Edio0_V2Z_Wiapper_T Ov_TL_Teve
178 |5Vvinfo 208 |AMPI_Bcast 238 lov forward 268 I=e 298 |grow
IROTOUOL _AMPT_push [EdT00_vZ_wrapper_t Ni_Teverse N Tapeinios_kee
179| CallCodeResene 209 |AMPI|_Reduce 239 jos_reverse 269 | safe 299 p
ROTOOL_AMPT push [EdT00_vZ_wrapper_t O5_TOrWar
150 AMPI_Feques 210 |AMP1_Alireduce 240 |ov_reverse 270 il 300 |inithewTape

Figure B.2: List of Functions of ADOL-C

54

www.manaraa.com

B. LIST OF FUNCTIONS OF ADOL-C

No Name No Name No Name No Name No Name
J01 jopenTape 331 [setSoreManagerType | 361 pet_param_vec 391 spreadl 471 et val_block
TAPE_ANFI_tead
302 jgeiTapeinfos 332 JreallocStore 362 jead_tape_stats 392 packl 422 lint B
- =KIp_Tracenie_Cleany TEPE_AWMPT_Tead
303 releaseTape 333 [fail 363 |p 393 MINDEC 423 | MP1 Datatype
] - TEPE_AMPT_read |
304 lset_nesied_cix 334 |printEmor 364 jnit_for_sweep 394 pack? 424 | MPIRequest
[fov_ofset_T
305 jcurrently_nested 335 |learTapeBaseNames | 365 jnit_rev_sweep 395 lormard | 425 Rcocodeout
JUE [cached Trace Tags 336 fcreateHleName Jb66 End_sweep 396 ffos_forward | £26 jRcccov
oV wWR_Tar
307 setTapeinfolacSparse | 337 [duplicatesir 367 put op_resene 397 ward 427 pccadj
SElape NoHess Spars .
308 e 338 JreadConfigFile 368 pet op_block_f 398 [free 428 pcchrac
. nOopro_jorwerd_t
309 Jinit_lib 339 ftake_siock 369 jput loc_block 399 myfree 429 pght
- ndopro_jorwerd_s
310 clearCumeniTape 340 [keep_stock 370 put vals_writeBlock 400 spreadd 430 pfe
- nNdopro_jorwerd_a
311 [cleanlUp 341 ftaylor_begin 371 put val block 401 lnccodec 431 psnom
non_ind_old_torw
312 removeTape 342 ftaylor_close 372 pet val block_f 402 pack3 432 prd_Tig B
non_ind_old_forw
313 trace_on 343 ftaylor_back 373 pet_val_space 403 [Fprintf 433 prd_safe” ~
- - [0S _pi_TOTW TR _Tomwemd_T|
314 jrace_off 344 hwrite_taylor 374 Hiscard_params_r 404 lard 434 |jght
Os_piTeveE T i _Tomwerd_ |
315 checkintialStoreSize | 345 wrie_tayiors 375 feset val r 405 rse 435 Eafe
316 [Keeper 346 [wriie_scaylors 376 pet op_f 406 memset 436 [alloc
[ov_pl_forwa
317 initADOLC 347 |put_tay_block 377 pet op_r 407 rd - 437 |nt_reverse_tight
fos_pl_sig_T
318 |beginParallel 348 lget taylors 378 pet locint_f 408 eue‘rEE a- 438 |nt_reverse_safe
319 lendParallel 349 |get taylors_p 379 pet locint_r 409 malloc 439 |nt_forward_tight
320 [Tapelnfos 350 Jget_tay_block_r 380 pet val T 210 [dbinomi 440 Jnt_forward_safe
TEESparselacino |
321 [copy 351 |initTapeBufiers 381 pet num_switches 411 binomi 441 F
J22 [PersistaniTapeinfos Jal [stari_frace a62 popy_index_domain 417 lconvert 447 populate_dpp
SToreManagerLocimo! METQE_2_INdex_oom MUz e
323 jock 353 [save_params 383 jains 413 1 443 populate_dppp
ETEITECOng oS Lo [oTing_2_index_da TR VES
324 |ations 354 |stop_trace 384 |mains 414 2 444 joc
SETSITe MEanag ensonir Merge_J_INgex_oom
325 |ol 355 [close_tape 385 fains 415 stincpy 445 ppd_resloc_check
- [checkFPage POT_
326 joonsolidate Blocks 356 [free TapeResources 386 free_tree 416 Break 446 [CINT
[EnanEMnVEXTsngAD
327 357 [tapesiats 387 raverse_crs 417 fiush 447 put_op
oS (| G FAWEA T Y -
328 s 358 |printTapeStats 388 praverse_unary 418 fclose 448 ppd_resloc
[ExTeEnd_nonineanty_ lgET_op_Dio Dpd_reskoc_inc_pr
329 ladolc_exit 359 [get_num_param 389 |domair_binary_ste 419 ok 449 pd
[fre€_all_taping_param [EXTENd_nonineanty_ lgET IoC_bio
330 s 360 Jread_params 390 |domairm_unary 420 ok T 450 RADOLC_PUT_ VAL

Figure B.3: List of Functions of ADOL-C

55

www.manaraa.com

B. LIST OF FUNCTIONS OF ADOL-C

Mo Name No Name Ho Name Mo Name No Name
TAPE_AMPI_PIE_00 BW_ANPT
451 value 454 |uble 517 PW_AMPI_Gatherv 550 Gather 583 pmplace_front
IOOCC_IM_sparse_p TAPE_ARMPT_pop_do BW_ANPT
452 latiem 485 |uble 518 PW_AMPI_Scatterv 551 Scatier 584 [lear
TAPE_ARPI_pusi_ B _ AN
453 |delee_patem 486 P10 519 PW_AMPI_Aligatherv 552 Iligather 585 pop_front
TAFE_ANMPI_pop_MFP BW_ANPT
454 |push_back 487 || Comm 520 PW_AMPI_Bcast 553 Gatherv 586 pext
TAFE_ANMPI_pop_MFP EW_ANPT
455 |get_patiem_size 488 |I_Op 521 PWB_AMPI_Reduce 554 Scatien 587 pend
ROT OO _AMPL_pop_ BW_ANMPT -
456 |.get_patem 489 |CallCode 522 PW_ANPI_Alireduce 555 |Aligathery 588 [begin
EW_ARMHT
457 |begin 490 |assert 523 funciion_double 556 Beast ~| 589 front
[AFE_ANFT piEn_ W ROOLC _WHITE SC BWE _ANFT) -
458 lend 491 |PI_Request 524 AYLOR b57 Reduce 590 pcTrggerRatio
[AFE_ANFT pop_WFP BW_ANMFT -
459 ftrunc 492 [I_Request 525 hummy 558 |alireduce 591 pefore_beqgin
TFT_HEqUEST
IADTOOL_AMPI_pop_
460 [size 493 request 526 fp_os torward 559 spread? 592 prase_after
WTFT_Commmm
IADTOOL_AMPI|_pop_ l?eﬂape\-'ec
461 Jdubref 494 fcomm 527 oo sorward 560 or 593 port
[ROTOOL_ARMPT_=ACh fUNCHEVETS
462 |MPl_Op_creaie 495 weType 528 bp_nos_torward 561 o 594 FatalEmor
TAFE_ANPT_read_WMP FOnCFomwar ToreManager oo
463 |I_Comim 496 [memcpy 529 |p_nov_torwand 562 \d 595 pt
464 [allocatePack 497 fisDenvedType 530 Fp_nos_reverse K] ffuncFnmal | 596 Firen
- FandiEvec -
465 [TLM_AMPI_lsend 498 [denvedTypeldx 531 fp_nowreverse hE4 lor 597 [Eprintf
BOTOOL_ANP_Ses [CEaTHaEmE
466 [TLM_AMPI_Irecv 499 djointCount 532 pvolve_for BES 5 598 Etrchr
[ATTICNES
467 [TLM_AMP1 Wait 500 [MPI_Abort 533 pvolve 566 tatic 599 Etrioul
RO OO _AMPLSACT IROOLC _GET_TATL
468 [rum_ame_gamier 501 weTyp 534 |OR BET & 600 [trcmp
460 TLM_AMPI_Gather 502 |jgeiDTypeData 535 pmpty L6l mExTange 601 Fiaf
Eut_ua]s_rmn‘-‘rﬂe_
470 [TLM_AMPI_Scatter 503 ur_typ 536 top 569 numfony 602 Block
471[TLM_AMPI_Allgather | 504 [u= myp 537 pop 570 realloc 603 fseek
i Tapeno
472 [TLM_AMPI_Gatherv [505 |mei_mype contiquous 538 paveMNonAdoubles 571 5 604 fread
4T3 [TLM_AMPI_Scattery | 506 [ur1 type comms 539 jestore NonAdoubles 572 rewind 605 fopen
MOpUEE_dppp_noda
474 [TLM_AMPI_Allgathery | 507 [MPI_Type_free 540 [ia 573 push 606 prite
STSTLM_AMPT_Allreduce [508 [FW_AMPT_Send 541 funciion_tAm LYE) resize 60T pet tay_block
ATE[TLM_AMPT Bcast S0 [FW_AMPT_Recv 54 pet_ext_dif_fct 57o init 608 markMewTape
477 [MPI_Init 510 [FW_AMPI_lsend 543 pack L76 pop_back 609 put op_block
278 [TAFE_ANPT_push_int | 511 [FW_AMPI_Trecv LI BW_ANPT Send Lyl remaove 610 MIN_ADDLT
[AFE_AMFI_puEn_ W -
479 |PI_Daftype 512 |PN_AMP|_Wait 545 BW_AMPI_Recv 578 lerase 611 pet val block_r
EXTENd_nNoOnInEan,
ITAPE_AMPI_push_M _domain_binary_
480|PI_Comm 513 |PW_AMPI_Barrier 546 BW_AMP| Isend 579 [flush 612 FElep
[RFE_ANMPI_on_WMPT_
481 |Comm 514 |PV_AMPI_Gather 547 BW_AMPL lrecv 580 ftouch
[omp_geT_In
482 [TAPE_AMPI_pop_int |515 |[PW_AMP|_Scatter 548 BW_AMP1 Wait 581 read_num
TBFE_AMPL_pop_MFT - [Omp_geL
483| Datafype 516 |PW AMP| Allgather | 549 BW AMPI Bamier 52 um_fhreads

Figure B.4: List of Functions of ADOL-C

56

www.manaraa.com

