
www.manaraa.com

MANAGING COMPLEXITY IN SCIENTIFIC SOFTWARE

SHARMIN ISLAM
Bachelor of Science, Military Institute of Science and Technology, 2013

Master of Business Administration, Bangladesh University of Professionals, 2015

A thesis submitted
in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Sharmin Islam, 2020

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

27963072

27963072

2020

www.manaraa.com

MANAGING COMPLEXITY IN SCIENTIFIC SOFTWARE

SHARMIN ISLAM

Date of Defence: April 27, 2020

Dr. Shahadat Hossain Professor Ph.D.
Supervisor

Dr. Saurya Das Professor Ph.D.
Committee Member

Dr. Robert Benkoczi Associate Professor Ph.D.
Committee Member

Dr. Howard Cheng Associate Professor Ph.D.
Chair, Thesis Examination Com-
mittee

www.manaraa.com

Dedication

To my beloved parents and

my son, Rayan.

iii

www.manaraa.com

Abstract

One of the expected benefits of a modular design is flexibility. By the word “flexibility”

we mean possibility of drastic changes to a module without changing or without know-

ing other modules. Based on the evolutionary data available on version control systems,

it should be possible to analyze the quality of a modular software architecture and decide

whether it is worth to restructure its design. In this thesis we investigate this issue using a

novel approach based on a general theory of modularity that uses design structure matrices

(DSM) for reasoning about quality attributes. Using our approach, we can categorize the

functions in different tiers. This finding suggests that the analysis of different tiers of func-

tions of a software system might serve as guidance to developers in the challenging task

of redesigning a software by detecting and retrieving components that could be reused in

other software projects.

iv

www.manaraa.com

Acknowledgments

First and foremost, I would like to thank the Almighty for giving me the opportunity,

strength, and patience to undertake this research. This work would not have been possi-

ble without His blessing.

I am lucky that I have worked under the supervision of Dr. Shahadat Hossain. The way

he treated me, it felt like he is not my supervisor instead my guardian. It may be difficult for

me to work under any supervisor in future after working with such a great person. Thank

you, Sir, for everything.

I want to express my sincere gratitude to my supervisory committee members, Dr.

Saurya Das and Dr. Robert Benkoczi. Their guidance, encouragement, and suggestions

helped me a lot. Their immense efforts and the way of directing the students of optimiza-

tion research group can be a model to others.

Without the encouragement I got from my families it would not be possible for me to

come to this far and go forward. I am very grateful to my parents as well as to my parents-

in-law and all the members of my two families. I want to thank my husband Wali. Without

him, my life would be a lot more difficult.

I also want to thank all my friends and well-wishers as well as all the members from the

Optimization group.

I am thankful to the Alberta Innovates for Technology Futures Graduate Student Schol-

arship, and the School of Graduate Studies (SGS) of the University of Lethbridge for their

financial support.

Last but not least, I am also grateful to the researchers for their ideas and contributions

in this field.

v

www.manaraa.com

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Preliminaries . 3

1.1.1 Scientific Computing Software . 3
1.1.2 Software Architecture . 4
1.1.3 Dependency Relationship . 4

1.2 Our Contribution . 5
1.3 Thesis Organization . 5

2 Dependency Extraction and Modeling 7
2.1 Design Structure Matrix . 7
2.2 Dependency Extraction . 9
2.3 Relations, Matrices and Graphs . 12

2.3.1 Relations . 13
2.3.2 Graphs . 13
2.3.3 Matrices . 15

3 Dependency Analysis 17
3.1 Eigenvalues and Eigenvectors . 17
3.2 Hub and Authority . 20
3.3 Hypertext Induced Topic Search (HITS) 20

4 Methodology and Results 24
4.1 Methodology . 25

4.1.1 Extracting Dependencies . 26
4.1.2 Building DSMs . 27
4.1.3 Computing Hub and Authority Ranking 29
4.1.4 Computing Cosine Similarities . 32
4.1.5 The Algorithm . 34

4.2 Settings . 36
4.2.1 Target Systems . 36
4.2.2 Selection of the Threshold . 38

4.3 Results . 38

vi

www.manaraa.com

CONTENTS

4.3.1 Discussion . 39

5 Summary and Future Work 48

Bibliography 50

A List of Functions of CSparse 52

B List of Functions of ADOL-C 53

vii

www.manaraa.com

List of Tables

3.1 Hub and Authority Ranking (Scores correspond to the dominant eigenvector) 23

4.1 Hub and Authority rank of first five functions of CSparse project 32
4.2 Hub and Authority rank of first five functions of ADOL-C project 32
4.3 Cosine Similarities of First Five Functions (considering Hub and Authority

Rank) of CSparse Project . 34
4.4 Cosine Similarities of First Five Functions (considering Hub and Authority

Rank) of ADOL-C Project . 34

viii

www.manaraa.com

List of Figures

2.1 An example of DSM: a) Dependency Graph, b) Dependency Matrix 8
2.2 Calls relationship . 10
2.3 Function dependency . 11
2.4 Function description . 11
2.5 A pseudocode example for function dependency 12
2.6 An example of graph: a) Undirected Graph, b) Directed Graph 14
2.7 An example of a valued graph . 14
2.8 An example of a DSM . 16

3.1 An example: a) A Graph, b) An Equivalent Adjacency Matrix or DSM . . . 18

4.1 Sparse Matrix of CSparse . 26
4.2 Sparse Matrix of ADOL-C . 27
4.3 Dependency graph of CSparse . 28
4.4 Dependency Graph of ADOL-C . 29
4.5 DSM of CSparse . 30
4.6 An Example of Hub and Authority . 31
4.7 DSM of CSparse with provided partitions [6]. Primary, Primary Utility,

Secondary, Secondary Utility, Tertiary and Tertiary utility are marked by
red, purple, green, yellow, blue and brown colors respectively. 39

4.8 CSparse, Tiers of Hub Functions functions are selected from DSM 40
4.9 CSparse, Tiers of Authority Functions functions are selected from DSM . . 40
4.10 CSparse, Tiers of Hub Functions functions are selected from AA> 42
4.11 CSparse, Tiers of Authority Functions functions are selected from A>A . . 43
4.12 ADOL-C, Tiers of Hub Functions functions are selected from AA> 44
4.13 ADOL-C, Tiers of Authority Functions functions are selected from A>A . . 45
4.14 ADOL-C, Hub Functions are selected from AA>, threshold = 0.4 46
4.15 ADOL-C, Authority Functions are selected from A>A, threshold = 0.4 . . 47

A.1 List of Functions of CSparse . 52

B.1 List of Functions of ADOL-C . 53
B.2 List of Functions of ADOL-C . 54
B.3 List of Functions of ADOL-C . 55
B.4 List of Functions of ADOL-C . 56

ix

www.manaraa.com

Chapter 1

Introduction

Software systems can be viewed as a network of components joined together by dependence

relationships. In software and other technological systems such as process, product, or

organizational architectures some of its functionalities are realized by the interaction pattern

of components or subsystems [7]. For example, modular software systems allow tracking

bugs to a small number of well-defined subsystems or modules.

Many scientific software are usually written by domain experts and address some spe-

cific scientific computing problem. For instance, CSparse software implemented in C is

concerned with solving system of linear equation Ax = b where the coefficient matrix A

is sparse. ADOL-C is a software system to compute mathematical derivatives (gradient,

Jacobian, Hessian, Taylor coefficients) of a mathematical function available as a computer

program in a programming language (C). The software applies algorithmic differentiation

techniques to compute accurate (upto machine precision) numerical derivatives of the func-

tion program at a specified point.

A convenient tool to represent and analyze architectural complexity of these software

that is popular among systems engineers and architects is the so called Design Structure

Matrix (DSM), and extensions Domain Mapping Matrix (DMM), and Multi Domain Matrix

(MDM) [7]. Since a DSM can be represented by a matrix in Rm×n, it is amenable to analysis

by sophisticated linear algebraic methods such as singular value decomposition (SVD).

Moreover, utilizing the duality of a sparse matrix and its graph, a sparse matrix A can be

rearranged (through permutation P) into a computationally beneficial form called “block

1

www.manaraa.com

1. INTRODUCTION

triangular form (BTF)” P>AP also known as “partitioning” in DSM community.

Professor Hossain and his group have proposed using DSM to model and analyze de-

pendence complexity of scientific software systems [14, 15, 1, 13]. One of the main mo-

tivations was to study legacy code to determine the dependency information through static

call graphs. The information gathered can be utilized to restructure or reuse the compo-

nents by analyzing the dependence information using techniques from the emerging filed

of complex networks [9].

In a recent work, Professor Hossain and his group have studied architectural properties

of a small suite of representative scientific software [15]. The studied software tools display

shorter characteristic path lengths, small nodal degrees, and small propagation costs, similar

to general-purpose software such as operating systems [4, 19].

For variety of reasons legacy software may not contain adequate technical documenta-

tion so that from a usability point of view it may be difficult to detect and retrieve com-

ponents that could be reused in other software projects. In this thesis we study software

systems specifically designed for problems arising in scientific and engineering applica-

tions [16].

Analytics tools such as “Understand” [21] allows us to view dependency structure of

the software at varying level of details: file, class, function, statement etc. In our work

we analyze the dependency structures of programs where caller-callee relation between

functions captured by static call graph depicts fundamental control flow in the program.

Static call graphs are limited to portraying direct dependencies among design elements

(in our case functions). In this paper we are interested in uncovering “similarity” among de-

sign elements. We can then use a suitable similarity metric to partition the design elements

among groups or clusters where the elements in the same group are “similar” in a certain

way. An immediate application of such a decomposition is the ability to retrieve group of

“similar” functions from a software repository. Combined with the notion of “importance”

of design elements [13], our goal in this work is to group or cluster the design elements into

2

www.manaraa.com

1.1. PRELIMINARIES

“tiers” ranked by their “importance”.

1.1 Preliminaries

1.1.1 Scientific Computing Software

Thousands to millions of lines of source code make software systems as complex prod-

ucts. The software system depends on design decisions, internal and external constraints,

different technical and non-technical concerns [11]. Development of scientific comput-

ing software applications is considered as a proof-of-concept tool. But powerful hardware

resources facilitated scientific software to solve and simulate large problem. The recent

development of more powerful hardware resources encourages to increase number of sci-

entific applications which simulate more effectively and efficiently than the applications

built before [15]. These simulation software applications are highly complex and contain

millions of lines of computer code. These applications have significant investment in time

and other computational and manpower resources. Re-usability, efficiency, portability, cor-

rectness, robustness and ease of use are various attributes of scientific software.

One or more independently developed modules compose a software system. We can

consider each module as a segment of the software. From these modules we can find their

dependencies. For example, we say, Module A depends on Module B when Module A

uses (calls) Module B. Here we describe two types of software dependencies: static and

dynamic. Static dependencies are extracted from code that is not in execution state and use

source code as input. Dynamic dependencies are extracted from the code in an execution

state and use executable code and the program state as input. The problem of dynamic

dependency is the presence of some subroutines which are executed only at run time. The

benefit of considering static dependency is using source code as input and does not relying

on program state. This is why we have considered static dependency in our work.

3

www.manaraa.com

1.2. OUR CONTRIBUTION

1.1.2 Software Architecture

Architecture is the fundamental organization of a system embodied in its components,

their relationships to each other, and to the environment, and the principles guiding its

design and evolution [20]. The software architecture of a program or computing system is

the structure or structures of the system, which comprise software elements, the externally

visible properties of those elements, and the relationships among them [2].

The complexity of large software systems can be identified easily using software archi-

tecture. For a software system, its architecture is considered as its high level structure. In

other words, software architecture is an abstraction of a complex system. There are some

benefits of this abstraction, such as:

1. The software architecture can give a basis for analysis of the behavior of software

systems.

2. It can save design costs by providing a basis for re-use of elements (A complete soft-

ware architecture or parts of it) whose stakeholders require similar quality attributes

or functionality.

3. Early design decisions can be made which helps in software development life cycle

(development, deployment, and maintenance).

1.1.3 Dependency Relationship

A dependency relationship can be applied between elements of a system to indicate that

a change in one element may result in a change in other elements if there exists dependency.

Dependency relationship can be viewed as a complex network. This complex network

view has been successfully applied in numerous areas. For example, the human cerebral

cortex (a complex system) has been used in the paper [5]. That work reported local and

global differences between diseased patients and controls by evaluating communicability

measure of weighted networks.

4

www.manaraa.com

1.3. THESIS ORGANIZATION

1.2 Our Contribution

A software may not contain adequate technical documentation for variety of reasons.

So it may be difficult to detect and retrieve components that could be reused in other soft-

ware projects. Our goal is to retrieve group of “similar” design elements from a software

repository into “tiers” ranked by their “importance”.

Our contributions to achieve this goal are pointed below.

1. Analyzing of dependency structure of the software by capturing caller-callee rela-

tionship between functions using tool “Understand” [21].

2. Ranking the design elements (functions) using the notion of “importance” of those

design elements [13].

3. Using a suitable similarity metric (cosine similarity) to partition the design elements

(functions) among groups or clusters.

4. Grouping the design elements into “tiers” ranked by their “importance”.

5. Numerical experiments to show the results of our implementation.

1.3 Thesis Organization

There are a total of 6 chapters in this thesis. Chapter 1 is the introductory chapter where

we introduce the problem and significance of solving the problem in general. Then we

present definitions and description of scientific computing software and their architectures

as well as dependency relationship concepts. We also discuss our contribution and thesis

organization in this chapter.

In Chapter 2, we discuss the description of the dependency extraction and modeling.

We describe some tools that are used to extract and visualize call graphs. At the end of this

chapter, we mention the tool that was used in our thesis.

5

www.manaraa.com

1.3. THESIS ORGANIZATION

Detailed description about component centrality using a spectral method has given in

Chapter 3. Before explaining these methods, with some small examples, we describe eigen-

values, eigenvectors, hub and authority.

Chapter 4 includes a brief discussion on the methodology of our novel approach to

analyze the scientific software followed by a detailed description of the target systems.

These systems include CSparse and ADOL-C. Then we discuss the implementation of the

algorithm. Finally, we report and discuss our results from the experiments.

We give the concluding remarks and future work directions in Chapter 5.

6

www.manaraa.com

Chapter 2

Dependency Extraction and Modeling

2.1 Design Structure Matrix

The Design Structure Matrix (DSM) is a simple, compact and visual representation of a

system or project in the form of a square matrix [7]. The DSM is a network modeling tool

used to represent the elements comprising a system and their interactions. It highlights the

system’s architecture or the relationships between elements in a system by examining the

dependencies that exist between its elements in a square matrix.

To analyse a system, DSM models can be rearranged or partitioned using various ana-

lytical methods, such as, clustering and sequencing.

DSM offers following advantages:

• The DSM provides a compact representation format for large, complex system.

• The DSM highlights a system-level view to a system designer which supports more

globally optimal decision making.

• The basic structure of a complex system becomes understandable because of the

DSM.

• The DSM is represented using a square matrix. Hence a number of powerful analysis

in graph theory and matrix mathematics as well as specialized DSM analysis methods

are applicable to DSM.

We use a simple example to show the element relationships (see Figure 2.1). We note

that the system that is composed of five elements (or sub-systems): “A”, “B”, “C”, “D” and

7

www.manaraa.com

2.1. DESIGN STRUCTURE MATRIX

“E”. We assume that the five elements completely describe the system and characterize its

behavior while we use DSM for the modeling purpose. To represent this system pictorially

we use graphical form. The system graph is constructed by allowing a vertex/node on

the graph to represent a system element and an edge joining two nodes to represent the

relationship between two elements. The directionality of influence from one element to

another is captured by an arrow instead of a simple link. For example, we can see there is

an arrow from Element A to Element B. If these elements are considered as function then

we can say Function A calls Function B. Therefore Function A is caller and Function B is

callee. The resultant graph is called a directed graph or simply a digraph (shown in Figure

2.1 a).

(a) (b)

Figure 2.1: An example of DSM: a) Dependency Graph, b) Dependency Matrix

We can represent DSM using matrix form. The matrix representation of a directed

graph has some properties, such as, it is binary (unweighted); or it can also be weighted, it

is square (it has n rows and columns where n is the number of nodes of the digraph), it has

k non-zero elements (k is the number of edges in the digraph).

The elements’ names are placed down the side of the matrix as row headings and across

the top as column headings in the same order (see Figure 2.1 b). If there exists an edge (rela-

tion) from node x to node y, then the value of Element[x][y] is marked with an X . Otherwise,

8

www.manaraa.com

2.2. DEPENDENCY EXTRACTION

the value is left empty. The diagonal elements of the matrix do not have any interpretation

but in some cases they are considered as representative of the nodes themselves. For binary

matrices X is 1 and for other matrices X means numeric value.

2.2 Dependency Extraction

Investigating program dependencies such as function calls is challenging for very large

systems [22]. There are two main classes of the call graph extractors: Lightweight and

Heavyweight. A fraction of the entire static information is provided by lightweight extrac-

tion, on the other hand, heavyweight extractors provide a complete call graph. Heavyweight

extractors again can be categorized in two types: strict and tolerant. Like compilers, a strict

heavyweight extractor stops when there is a lexical or syntax error. Tolerant extractor pro-

vides complete static call graphs.

Understand [21] is a tool which can be used for dependency extraction. In this thesis,

we have used this tool. Understand is used to analyze the dependencies between software

artifacts in a project. The application supports a wide range of programming languages,

including Java, C#, C++ classes & Ada packages for dependency information and can

access dependency information from the C++ and PERL APIs. Using this software, we

can navigate codes using a detailed cross-referencing and visualize them using graphical

representations. Analyzing any source codes means analyzing its different units because

these units have some distinct features which reflects on source codes. Understand has

architecture features that help us to create hierarchical aggregations of source code units.

Dependencies between these units can be observed from the Dependency Browser and vi-

sualized by Dependency Graphs. However, we can consider different parameters, such as,

nodes, files, classes, packages, and interfaces to observe dependencies between different

units of the source codes using the Dependency Browser. This tool has following features

to observe dependencies[21]:

• Rapid browsing of dependencies for files and Understand architectures

9

www.manaraa.com

2.2. DEPENDENCY EXTRACTION

• List “dependent” , and “dependent on” entities, for files and architectures

• Spreadsheet export of dependency relationships

• A Dependency Browsing dock that shows all dependency information

For a brief explanation of the dependencies that can be extracted using Understand,

we can consider a demo source code shown in Figure 2.5. Now we can demonstrate this

example to show different dependencies:

• Include dependency: The Include Dependency graph shows the files that are needed

to be included for implementation. For example, a file “xyz.c” is dependent on an-

other file “xyz.h” means that “xyz.c” has included the file “xyz.h”. This dependency

can be found using Understand.

• Call dependency: Using Understand, Figure 2.2 shows calls relationship from A to

D. We can check whether there is a relationship between two elements of the system

or not. Then using the tool Understand, we can also see Figure 2.3 where the files/

functions with the outgoing edges are dependent on the files/ functions with the in-

coming edges. For example, by looking at Figure 2.3 we can tell that the function A

is dependent on the functions B and C, as there is an edge from A to B and C. The

details of these calls or dependencies can be found in the Information Browser.

Figure 2.2: Calls relationship

• Init dependency: The init dependency focuses on the initialization of an object.

10

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

Figure 2.3: Function dependency

• Set dependency: Using Understand we can also find the set dependencies. Suppose

a function from one file sets value of an object from different file. Then we say there

exists a set dependency between these two files.

• Uses dependency: The Uses Dependency Graph shows the various uses between two

files. For example by looking at the use dependency graph we can tell that how

many times a file/ function uses another file/ function. Figure 2.4 shows some uses

information of Function B. Here we can see B calls functions D and E and called by

Function A. From graphical view we can see how many times it calls other functions.

Figure 2.4: Function description

11

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

Figure 2.5: A pseudocode example for function dependency

2.3 Relations, Matrices and Graphs

Analysis of large complex network is common in analysis of social networks and hence

their representations have become prime concern of the researchers. Besides a scientific

software also has pairwise information between its units (modules) which require pairwise

representation.

The field of pairwise information analysis uses three, highly related, mathematical con-

structs to represent them: relations, graphs and matrices.

12

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

2.3.1 Relations

A binary relation R can be defined as a set of ordered pairs (x,y). For most useful

relations, the elements of the ordered pairs are naturally associated or related in some way.

This relation (ordered pairs) relates the two sets together and comprises a mapping.

For example, a relation can be found in a function too. Here y = f (x) = 2x is a func-

tion of all even numbers. The equation notation is just short hand for enumerating all the

possible pairs in the relation, such as, {(1,2),(2,4),(3,6), . . .}.

Example shown in Figure 2.5 can be represented as R = {(A,B),(A,C),(B,D),(B,E),

(C,E),(D,A),(E,D)}.

2.3.2 Graphs

Let G(V,E) be a graph where V is the finite set of vertices and E is the set of edges

representing pairwise relationship between vertices in V . There are some categories of

graphs and we use them according to our needs for analysis.

• Directed and Undirected graphs: Directed graphs (also called digraphs) is a graph

that is made up of a set of vertices connected by edges, where the edges have a

direction associated with them. This graphs consist of ordered pairs. We can use

these to represent non-symmetric relations like call graphs. On the other hand, an

undirected graph consists of unordered pairs where all the edges are bidirectional.

They are used for the relations which are necessarily symmetric. Figure 2.6 (a) is an

example of an undirected graph and Figure 2.6 (b) is an example of a directed graph.

• Valued and Non-Valued graphs: In valued graphs, the edges have values attached

to represent characteristics of the relationships, such as strength, duration, capacity,

flow, etc. For our example, we can label an edge by the number of times a function

is called. Non-valued graphs do not express any value for the edges. Figure 2.7 is

an example of valued graph, where each edge has a value on it. On the other hand,

Figure 2.6 can be considered as examples of two non-valued graphs.

13

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

(a) (b)

Figure 2.6: An example of graph: a) Undirected Graph, b) Directed Graph

Figure 2.7: An example of a valued graph

• Reflexive and Non-Reflexive graphs: Reflexive graphs allow self-loops. That is, a

vertex can have an edge to itself. For example, if a function calls itself (recursive

function) then there will be an edge from that vertex to itself (self-loop).

• Multi-graphs: If there exists more than one edge between two vertices, then the

graph is called a multigraph. However, instead of using multigraphs, we prefer to use

valued graphs. For example, if Function A calls Function B for two times, then we

place a label 2 on the edge between A and B.

Now we require some preliminary definitions.

The degree of a vertex is the number of vertices which are adjacent to that vertex.

However, it is the number of edges that are incident upon that vertex. For example, in

Figure 2.6 (a), Vertex 4 has degree 3. A zero-degree vertex is called isolate; Vertex 3 in

14

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

Figure 2.6 (a) is an isolate vertex. A vertex with degree 1 is called a pendant. Vertex 1 in

Figure 2.6 (b) is such a vertex.

In a digraph (see Figure 2.6 (b)), the indegree of a vertex is the number of arcs (or

edges) coming in to that vertex from others, while the outdegree is the number of arcs

from that vertex to all others. In Figure 2.6 (b), Vertex 2 has indegree 2 and outdegree 1.

A graph is connected if there exists a path from every vertex to every other vertices. A

maximal connected subgraph is called a component. The graph shown in Figure 2.6 (a)

has two components: {1,2,4,5} and {3}. A maximal subgraph is a subgraph that satisfies

some specified property (such as being connected) and to which no vertex can be added

without violating the property.

2.3.3 Matrices

The dependencies depicted by a graph can also be represented by a matrix of appropriate

dimension. The reason of using two different ways, graph and matrix, to represent the same

information is because there is a trade-off. Graphs are more intuitive than matrices but they

can be difficult to understand when the number of nodes and edges grow. A few dozens

nodes can be enough to produce a graph too complex. On the other hand, large and complex

graphs can be very efficiently represented by a matrix.

X =

0 1 1 0 0

0 0 0 1 1

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

(2.1)

In Figure 2.8, we show a DSM considering the example shown in Figure 2.5. Here,

rows correspond to the caller functions and columns correspond to the callee functions.

15

www.manaraa.com

2.3. RELATIONS, MATRICES AND GRAPHS

Figure 2.8: An example of a DSM

The equivalent matrix representation is presented in Equation 2.1. An entry Xi j = 1 means

the function at Rowi calls the function at Column j.

If we want the relation in other direction then we can simply transpose matrix X and get

X> (see Equation 2.2). When X is symmetric we have X> = X .

X> =

0 0 0 1 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 1

0 1 1 0 0

(2.2)

In the beginning of this chapter, we have discussed about DSM. A DSM is a square

matrix, which is used to represent the exactly same information that is in the graph or in

the adjacency matrix. In this thesis, we use the duality of a graph and matrix to effectively

represent and compute quantitative information about the architecture of a software system

using Graph Theory and Linear Algebra.

16

www.manaraa.com

Chapter 3

Dependency Analysis

In this thesis our objective is to find out groups of important functions (the relative im-

portance of components in scientific software) where a group contains the most similar

functions. Instead of using clustering algorithms we are using hub and authority ranking

to consider functions in order and then make groups by evaluating their cosine similarity.

Hub and authority ranking (using spectral methods) rely on the eigenvalues of matrix rep-

resentations of networks, and capture global information on structure. In this chapter we

will discuss about HITS method that we have used for our analysis.

3.1 Eigenvalues and Eigenvectors

If A is an n×n matrix, then a nonzero vector x in Rn is called an eignevector of A if Ax

is a scalar multiple of x; that is,

Ax = λx (3.1)

for some scalar λ. The scalar λ is called eigenvalue of A, and x is said to be an eigen-

vector of A corresponding to λ.

For example, vector x =

1

2

 is an eigenvector of A =

 4 0

12 −2

 corresponding to the

eigenvalue λ = 4, since

Ax =

 4 0

12 −2

1

2

=

4

8

= 4x

17

www.manaraa.com

3.1. EIGENVALUES AND EIGENVECTORS

To find the eigenvalues of an n×n matrix A, we rewrite Equation 3.1 as Ax = λIx, or as

follows:

(λI−A)x = 0 (3.2)

Therefore, Equation 3.2 has a nonzero solution if and only if, det(λI−A) = 0.

Here we can discuss these mathematical terms with an example. For simplicity, we

recall the example stated in previous chapter.

(a) (b)

Figure 3.1: An example: a) A Graph, b) An Equivalent Adjacency Matrix or DSM

From example shown in Figure 3.1, we get DSM as Matrix A as following equation:

A =

0 1 1 0 0

0 0 0 1 1

0 0 0 0 1

1 0 0 0 0

0 0 0 1 0

(3.3)

In Section 3.3, we shall discuss HITS algorithm from [17]. To describe that algorithm

we require two special matrices B1 = AA> and B2 = A>A, where A> is transpose of Matrix

18

www.manaraa.com

3.1. EIGENVALUES AND EIGENVECTORS

A (Matrix A is a Boolean matrix). In HITS algorithm we are computing the largest eigen-

value and the associated eigenvector of matrices B1 and B2. These B1 and B2 matrices are

symmetric matrices. Symmetric matrices have real (real number) eigenvalues.

The command [V,λ] = eig(B1) in Octave returns diagonal matrix λ of eigenvalues and

matrix V whose columns are the corresponding eigenvectors, so that B1 ∗V =V ∗λ.

V =

0.00000 −0.00000 0.00000 1.00000 0.00000

0.57735 0.00000 −0.00000 0.00000 0.81650

−0.57735 0.00000 −0.70711 0.00000 0.40825

0.00000 −1.00000 0.00000 0.00000 0.00000

−0.57735 0.00000 0.70711 0.00000 0.40825

(3.4)

λ =

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 2 0

0 0 0 0 3

(3.5)

Similarly, we compute the matrix of eigenvectors V associated with the eigenvalues λ

of matrix B2.

19

www.manaraa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

V =

0.00000 1.00000 0.00000 −0.00000 0.00000

−0.70711 0.00000 0.00000 0.70711 0.00000

0.70711 0.00000 0.00000 0.70711 0.00000

0.00000 0.00000 −0.70711 0.00000 0.70711

0.00000 0.00000 0.70711 0.00000 0.70711

(3.6)

The spectrum of the DSM of call graph and the associated eigenvectors can reveal a

wealth of structural information about the underlying network as we demonstrate in this

thesis. The spectral ranking method that is used in this thesis (HITS) is obtained from the

eigenvectors associated with selected eigenvalues of the associated DSM.

3.2 Hub and Authority

In a network, Hubs and Authorities are the two types of important nodes. A dependency

graph also can be considered as a network, where functions are considered as node and their

dependencies are considered as arcs. Hubs are nodes which point to many nodes of the type

important, where authorities are these important nodes. For example, Figure 3.1 shows a

network between five elements where a function is hub if it calls other functions and a

function is authority when it is called by other functions.

From this comes a circular definition: good hubs are those which point to many good

authorities and good authorities are those pointed to by many good hubs [3].

3.3 Hypertext Induced Topic Search (HITS)

Hypertext-Induced Topic Search (HITS) is an algorithm developed by Kleinberg [17],

a professor in the Department of Computer Science at Cornell. This algorithm made use

of the link structure of the web in order to discover and rank pages relevant for a particular

20

www.manaraa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

topic. The HITS ranking relies on an iterative method converging to a stationary solution.

According to Kleinberg, each node in the network i is assigned two non negative weights:

authority weight (xi) and hub weight (yi). Initially, each xi and yi is given an arbitrary

nonnegetive value. Then the weights are updated using Equation 3.7 and Equation 3.8 for

k = 1,2,3,

x(k)i = ∑
j:(j,i)∈E

y(k−1)
j (3.7)

y(k)i = ∑
j:(i, j)∈E

x(k)j (3.8)

• Update authority weight: Here we use Equation 3.7. In the kth iteration, node i is

assigned a new authority weight, x(k)i which is equal to the sum of y(k−1)
j where the

sum runs over each node j which points to node i. For all nodes in the graph we use

this step, i.e. for i = 1,2, . . . ,n (n is the number of nodes in the network).

• Update hub weight: Equation 3.8 will be used here. The new hub weight y(k)i is

the sum of x(k)i , where the sum runs over the nodes j to which node i points. This is

repeated for all nodes in the graph.

Note that the hub weights are computed from the current authority weights, where those

authority weights were computed from the previous hub weights.

From the method described above, we observe the natural dependency relationship be-

tween hubs and authorities. y-value (hub) of a node is large, if the node points to many

nodes with large x-values (authorities) and vice versa [18].

We need to normalize all the hub and authority values for all nodes after each iteration

so that
√

∑
n
i=1 x2

i =
√

∑
n
i=1 y2

i = 1.

Now, in iteration k for n nodes we can represent hub and authority values in terms of

vectors. If ~xk represents the vector of authority values and ~yk represents the vector of hub

values in iteration k, then for n nodes we have

21

www.manaraa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

~xk =

xk(1)

xk(2)

...

xk(n)

(3.9)

and

~yk =

yk(1)

yk(2)

...

yk(n)

(3.10)

If k = 0, then using Equations 3.9 and 3.10 we can initialize ~x0 and ~y0, as x0(1) =

x0(2) = · · ·= x0(n) = (1/
√

n) and y0(1) = y0(2) = · · ·= y0(n) = (1/
√

n).

Let A be an adjacency matrix of the directed graph G. Then using Equation 3.11 and

3.12, we can represent the algorithm stated above.

~xk = ckA>~y(k−1) (3.11)

~yk = c′kA~xk (3.12)

ck and c′k from Equation 3.11 and Equation 3.12 respectively are the normalization

constants. In iteration k, these are chosen in a way that the sum of the squares of the

authority weights, as well as that of the hub weights are equal to 1. Considering these

equations we can now represent HITS method using following equations [17]:

22

www.manaraa.com

3.3. HYPERTEXT INDUCED TOPIC SEARCH (HITS)

~xk = ckc′(k−1)A
>A~x(k−1) for k > 1 (3.13)

~yk = c′kckAA>~y(k−1) for k > 0 (3.14)

Therefore we can say that HITS is an iterative power method to compute the domi-

nant eigenvector for AA> and A>A [10]. Dominant eigenvector is the column of matrix V

(corresponding eigenvector) which corresponds to the eigenvalue.

The hub scores and the authority scores are determined by the entries of the dominant

eigenvector of AA> and A>A respectively [3].

Again, we can consider Figure 3.1 as an example to explain the HITS algorithm, where

the adjacency matrix of that graph is given in Equation 3.3.

Table 3.1: Hub and Authority Ranking (Scores correspond to the dominant eigenvector)

Node Hub Score Hub Rank Authority Score Authority Rank
A 0.00000 3 0.00000 2
B 0.81650 1 0.00000 2
C 0.40825 2 0.00000 2
D 0.00000 3 0.70711 1
E 0.40825 2 0.70711 1

The eigenvectors of AA> and A>A corresponding to the largest eigenvalue λmax = 3 (see

Equation 3.5), yield the ranking for hubs and authorities (using HITS algorithm) as shown

in Table 3.1. We observe in Equation 3.5 that the dominant eigenvalue is in column 5 and

hence the 5th column of V in Equations 3.4 and 3.6 are the corresponding dominant eigen-

vectors. We consider these as scores for calculating hub and authority ranking respectively.

Here the ranking of nodes A to E for hubs is {3,1,2,3,2} and the ranking for authorities is

{2,2,2,1,1}.

23

www.manaraa.com

Chapter 4

Methodology and Results

Many software are usually written by domain experts and address some specific problem.

Most of the time these software do not contain adequate technical documentation for dif-

ferent reasons. So from a usability point of view it may be difficult to detect and retrieve

components that could be reused in other software projects. Analyzing such software are

more challenging for researchers.

In this thesis we analyze the dependencies between functions depicted by static call

graphs to categorize functions into groups of “similar functions” (by using hidden depen-

dencies as described below) according to their “importance” (by spectral ranking the func-

tions using HITS algorithm) in the software system. The hub functions that are categorized

“most important” are the functions that provide core services to its end users. The associ-

ated authority functions represent most important “service providers” to the hub functions.

A Hub function directly partakes in the implementation of core functionality of the

software. Examples of Hub functions in CSparse are cs lusol (solves a linear system with

unsymmetric coefficient matrix) and cs lsolve (solves a lower triangular linear system). On

the other hand, functions that are tasked with providing support services to the software

system are termed Authority functions. Examples of Authority function in CSparse are

cs realloc (changes size of a block of memory) and cs done (frees workspace and returns

a sparse matrix).

In a call graph if function i calls function j then we say that i depends on j. This type

of dependency is explicit in that it can be extracted directly from the source code. Suppose,

24

www.manaraa.com

4.1. METHODOLOGY

functions i and j both call function k. Intuitively, it means that functions i and j are related

in some way (depending on the context). This is an example of “hidden” dependency which

is not discernible from the call graph. We compute this kind of hidden dependencies from

the product matrix B = A ∗A>. A nonzero value of B(i,j) implies a “hidden dependency”

between functions i and j.

In this work we analyze the dependency structures of software (caller-callee relation

between functions) using tool “Understand” [21], and uncover “similarity” among design

elements (functions) using a suitable similarity metric (cosine similarity). Then combined

with the notion of “importance” of design elements [13], we group or cluster the design

elements into “tiers” ranked by their “importance”.

This chapter will discuss the impact of function dependencies on the software architec-

ture as well as the impact of uncovering “similarity” among design elements. Methodology

followed by experimental results of our novel work are also discussed in this chapter.

4.1 Methodology

This section describes the methodology we use in our work. We start this section by

describing the method of dependency extraction followed by building DSM. Using the ana-

lytics tool “Understand” [21] we can view and extract dependency structure of the software.

We extract caller-callee relation between functions to analyze the dependency structures of

programs. The method of finding “importance” of design elements [13] computes hub and

authority rankings which provide lists of important caller (hubs) and important callee (au-

thorities). Then we discuss the method of uncovering “similarity” among design elements.

Our goal is to group or cluster the design elements into “tiers” ranked by their “importance”

which is presented using a pseudocode.

Computational Infrastructure for Operation Research [8] (COIN-OR) is one of the largest

and most widely studied open source communities for scientific research software. We stud-

ied open source software projects from COIN-OR. For example, CSparse and ADOL-C

25

www.manaraa.com

4.1. METHODOLOGY

software implemented in C, will be described briefly in sections 4.2.1 and 4.2.1 respec-

tively. Then results for these software that we got from our experiments will be discussed

in Section 4.3. In the following sections we briefly describe our novel approach considering

these software.

4.1.1 Extracting Dependencies

In Section 2.2, we have given some preliminaries regarding extracting dependencies.

In this section, we discuss how we extract the call dependencies between functions (for

both CSparse and ADOL-C) using the “Understand” SciTool [21]. We have already dis-

cussed this tool in previous section. We can visualize these software (CSparse and ADOL-

C) using Octave. Figure 4.1 and Figure 4.2 show the matrices of CSparse and ADOL-C

respectively plotted using Octave.

Figure 4.1: Sparse Matrix of CSparse

26

www.manaraa.com

4.1. METHODOLOGY

Figure 4.2: Sparse Matrix of ADOL-C

For extracting the dependencies, first we download the full package (latest release) of

the system software (CSparse and ADOL-C). Then we import the package in “Understand”

SciTool. Then we can visualize call graphs (see Figure 4.3 and Figure 4.4). Then we

inspect each function and observe its detail from the description option. In this description,

we can find the list of functions which are called by that particular function and also a lot

of information. We can also export dependency matrices in different file formats.

4.1.2 Building DSMs

We create DSM with static dependencies. DSM is a visual representation of a system

and in the form of a square matrix. We have investigated CSparse project with 64 functions

and ADOL-C project with 612 functions. Therefore, CSparse has a DSM with 64X64

matrix and 612X612 DSM matrix for ADOL-C. These matrices are binary because we did

not consider weighted matrices. It means, even if a function i calls another function j for

27

www.manaraa.com

4.1. METHODOLOGY

Figure 4.3: Dependency graph of CSparse

more than once, we assume DSM[i, j] = 1.

Figure 4.5 shows the DSM for CSparse. The order of the functions (in rows or columns)

in this 64X64 binary matrix can be found from Appendix A. We see that, DSM[2,1] = 1,

which means, Function cs amd calls Function cs add. The blank cells are considered as 0.

We have similar DSM (612X612 binary matrix) for ADOL-C too.

28

www.manaraa.com

4.1. METHODOLOGY

Figure 4.4: Dependency Graph of ADOL-C

4.1.3 Computing Hub and Authority Ranking

In Chapter 3, using a small example we have discussed some methods of analysing

dependency between functions. For example, calculating eigenvalue and eigenvector from

given matrix, identifying hubs and authorities and use of HITS method to rank functions.

In this section, we describe the importance and the method of computing hub and authority

ranking for our approach.

For a given Matrix A, HITS algorithm computes two matrices B1 = AA> and B2 = A>A.

Matrices B1 and B2 have important role to compute hub ranking and authority ranking

29

www.manaraa.com

4.1. METHODOLOGY

Figure 4.5: DSM of CSparse

respectively. Figure 4.6 shows an example of a call graph for which we get,

B1 = AA> =

2 0 0 0

0 1 0 0

0 0 1 1

0 0 1 1

(4.1)

B2 = A>A =

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 1

(4.2)

Therefore, diagonal value of Matrix B1, diag(B1) = [2,1,1,1] represents outdegree of

the functions and diagonal value of Matrix B2, diag(B2) = [2,1,1,1] represents indegree of

30

www.manaraa.com

4.1. METHODOLOGY

Figure 4.6: An Example of Hub and Authority

the functions. Besides, in Equation 4.1 and 4.2, we see some values outside the diagonal

(reported as bold text). Equation 4.1 tells that Function C and Function D have an indirect

relationship though both of them call Function A (Green dot line in Figure 4.6). On the

other hand, Equation 4.2 tells that Function B and Function C have an indirect relationship

though both of them are called by Function A (Blue dot line in Figure 4.6).

So computing matrices B1 and B2 gives semantic dependency relationship where DSM

gives only the syntactic dependency relationship between functions.

Suppose we have build our DSM from the given source code which is A. Now compute

matrices B1 = AA> and B2 = A>A, where A> is transpose of Matrix A.

Then using Octave, we can find diagonal matrix λ of eigenvalues and matrix V whose

columns are the corresponding eigenvectors, so that Bi ∗V =V ∗λ, where Bi is B1 and B2.

We look for the dominant eigenvalue of λ which holds the highest magnitude of λ. The

corresponding column of V is the dominant eigenvector which is considered as the hub

value (for B1) and authority value (for B2) [13]. We sort the functions in descending order

according to their values (see Section 3.1) and hence get the authority ranking and hub

ranking of the functions.

In tables 4.1 and 4.2 we have reported 5 topmost authorities and hubs according to their

values for both CSparse and ADOL-C software respectively.

31

www.manaraa.com

4.1. METHODOLOGY

Table 4.1: Hub and Authority rank of first five functions of CSparse project

Rank Hub Hub Name Authority Authority Name
1 42 cs schol 27 cs malloc
2 44 cs sqr 51 cs calloc
3 37 cs qrsol 57 cs f ree
4 28 cs maxtrans 53 cs spalloc
5 29 cs multiply 63 cs s f ree

Table 4.2: Hub and Authority rank of first five functions of ADOL-C project

Rank Hub Hub Name Authority Authority Name
1 36 tape doc 60 myalloc1
2 4 jacobian 403 f print f
3 58 f orward 64 my f ree1
4 29 inverse Taylor prop 329 adolc exit
5 9 hessian 61 myalloc2

4.1.4 Computing Cosine Similarities

Cosine similarity is a metric used to determine how similar the functions are. Math-

ematically, it measures the cosine of the angle between two vectors projected in a multi-

dimensional space. In this context, the two vectors (two rows of DSM) are matrices con-

taining the call information of two functions. When plotted on a multi-dimensional space,

where each dimension corresponds to a function in the system, the cosine similarity cap-

tures the orientation (the angle) of the functions and not the magnitude. The cosine simi-

larity is advantageous because even if the two similar functions are far apart by rankings

they could still have a smaller angle between them. The smaller the angle, the higher the

similarity.

Equation 4.3 gives the cos(θ) (cosine similarity) between vectors~a and~b.

cos(θ) =
~a~b

‖~a‖‖~b‖
(4.3)

where~a and~b are vectors of the same size, ‖~a‖ and ‖~b‖ are the Euclidean norm of these

32

www.manaraa.com

4.1. METHODOLOGY

vectors, and n is the size of these vectors and the number of elements in the system.

In our work, DSM contains the call information between functions, where rows are

caller functions (hub) and columns are callee functions (authority). When we compute

cosine similarity between two caller functions, we select two corresponding rows from the

DSM as vectors ~a and~b. Again, when we compute cosine similarity between two callee

functions, we select two corresponding columns from the DSM as vectors~a and~b.

In our approach, we consider DSM as well as B1 =AA> (hub) and B2 =A>A (authority)

matrices to choose the vectors for similarity check. The importance of matrices B1 and

B2 are discussed in Section 4.1.3, where we have shown that matrices B1 and B2 contain

more important information than DSM. Therefore, we tested our approach for both type of

matrices.

From Equation 4.3, we observe that to calculate the dot product between two vectors

(∑n
i=1~ai~bi), it calculate sum of the product of corresponding entries of two selected rows or

columns.

We know, cos(0◦) = 1 and cos(90◦) = 0. Therefore, if two vectors are orthogonal (not

similar) than the value of cos(θ) will be 0 and if two vectors are parallel (similar) then the

value of cos(θ) will be 1. But if the value of cos(θ) is in between 0 and 1 then we can set a

threshold to identify the similarity. In this thesis, we have tested our algorithm for different

threshold value between 0 and 1. For example, 0.0, 0.1, 0.2, . . . , 0.9, 1.0.

Besides, we have calculated similarities between functions for hubs and authorities. For

hub, we choose two row vectors from the matrix and for authorities we choose two column

vectors from the matrix.

Now we compute the cosine similarities between first five functions (according to their

rank, see Table 4.1 and Table 4.2) considering both hubs and authorities (for projects

CSparse and ADOL-C).

Table 4.3 and Table 4.4 report cosine similarities between functions, where ~a and ~b

represents functions of the projects (see Appendix A and B). Here we get the value of

33

www.manaraa.com

4.1. METHODOLOGY

Table 4.3: Cosine Similarities of First Five Functions (considering Hub and Authority
Rank) of CSparse Project

Hub Functions Authority Functions
~a ~b cos(θ) ~a ~b cos(θ)

cs schol cs sqr 0.982167 cs calloc cs spalloc 0.873418
cs sqr cs maxtrans 0.798325 cs f ree cs s f ree 0.861267

cs schol cs maxtrans 0.776425 cs malloc cs calloc 0.848427
cs sqr cs qrsol 0.722491 cs malloc cs s f ree 0.678954

cs schol cs qrsol 0.696213 cs malloc cs f ree 0.674013
cs maxtrans cs multiply 0.69317 cs malloc cs spalloc 0.636215

cs qrsol cs maxtrans 0.691092 cs calloc cs s f ree 0.619324
cs schol cs multiply 0.590327 cs calloc cs f ree 0.557076
cs sqr cs multiply 0.577527 cs spalloc cs s f ree 0.262881

cs qrsol cs multiply 0.400871 cs f ree cs spalloc 0.220262

Table 4.4: Cosine Similarities of First Five Functions (considering Hub and Authority
Rank) of ADOL-C Project

Hub Functions Authority Functions
~a ~b cos(θ) ~a ~b cos(θ)

jacobian hessian 0.953637 myalloc1 my f ree1 0.970463
inverse Taylor prop hessian 0.89385 f print f adolc exit 0.944289

jacobian inverse Taylor prop 0.822776 my f ree1 myalloc2 0.879903
tape doc f orward 0.68348 myalloc1 myalloc2 0.865987
jacobian f orward 0.529026 myalloc1 adolc exit 0.359106
f orward hessian 0.504676 myalloc1 f print f 0.317976
f orward inverse Taylor prop 0.407995 adolc exit myalloc2 0.243542
tape doc hessian 0.315302 my f ree1 adolc exit 0.221187
tape doc jacobian 0.295122 f print f myalloc2 0.211266
tape doc inverse Taylor prop 0.234508 f print f my f ree1 0.190357

cos(θ) between 0 and 1. Therefore, by fixing a threshold we can say whether two functions

are similar or not.

4.1.5 The Algorithm

The complete algorithm of our approach to find out similar functions in different tiers

is presented below.

34

www.manaraa.com

4.1. METHODOLOGY

Algorithm 1: Group Similar Functions (DSM A)
1 N← Number of functions
2 threshold← a numeric value between 0 and 1
3 k← 0 . Number of tiers
4 while N > 0 do
5 h← List of top 5 elements in hub ranking order
6 a← List of top 5 elements in authority ranking order
7 U ← [] . U is the list of elements to be removed from A after each iteration
8 for i← 1 to 5 do
9 hub Similarity[i]← 0 . Store similarity between hub elements from h

10 aut Similarity[i]← 0 . Store similarity between authority elements from a
11 for i← 1 to 4 do
12 for j← i+1 to 5 do
13 hub Similarity[i]← hub Similarity[i]+ cosineSimilarity(h[i],h[j])
14 . cosineSimilarity() is a function as Equation 4.3
15 hub Similarity[j]← hub Similarity[j]+ cosineSimilarity(h[i],h[j])
16 for i← 1 to 5 do
17 hub Similarity[i]← hub Similarity[i]/4 . Calculating average similarity
18 k← k+1
19 for i← 1 to 5 do
20 if hub Similarity[i]>= threshold then
21 Include h[i] in Tk
22 U ←U ∪h[i]
23 for i← 1 to 4 do
24 for j← i+1 to 5 do
25 aut Similarity[i]← aut Similarity[i]+ cosineSimilarity(a[i],a[j])
26 aut Similarity[j]← aut Similarity[j]+ cosineSimilarity(a[i],a[j])
27 for i← 1 to 5 do
28 aut Similarity[i]← aut Similarity[i]/4 . Calculating average similarity
29 k← k+1
30 for i← 1 to 5 do
31 if aut Similarity[i]>= threshold then
32 Include a[i] in Tk
33 U ←U ∪a[i]
34 Remove all i ∈U from A
35 N← N−|U |
36 return T1,T2, ...,Tk . Ti is a tier containing similar functions

In this algorithm, DSM A is the input and a list of tiers having similar functions are

the output (T1,T2, ...,Tk). threshold is a predefined numeric value between 0 and 1. In

Section 4.1.3, we discussed how do we compute hub and authority ranking of the functions.

35

www.manaraa.com

4.2. SETTINGS

Following the same method, in Step 5, we get a list (h) of top 5 functions according to hub

ranking and in Step 6, we get a list (a) of top 5 functions according to authority ranking.

Now we describe how do we compute hub tiers. In steps 11 to 15 we calculate cosine

similarity between these 5 hub functions as described in Section 4.1.4. Then we compute

the average similarity of each hub functions in Step 17. In Step 20, the algorithm checks

whether the average similarity of function h[i] (i.e. hub Similarity[i]) is greater or equal to

the predefined threshold or not. If it satisfies the condition, then the function is included

in tier Tk, and also stored in U to be removed from Matrix A after the current iteration;

otherwise, it does nothing to that function. Similarly, for authority tiers, we followed steps

23 to 33. Therefore, in one iteration of the while loop, we compute two tiers, one for the

hub and one for the authority. The algorithm continues until there is no functions or no such

tier can be computed with our set conditions.

4.2 Settings

This section brings details about the study settings we use in our work. Here we discuss

our target systems and selection of thresholds for our experiments.

4.2.1 Target Systems

For our experiment, we select two software implemented in C/C++, CSparse version

5.6.0 and ADOL-C version 2.7.2. These scientific software are used to compute accurate

(upto machine precision) numerical derivatives of the function program at a specified point.

CSparse software is concerned with solving system of linear equation Ax = b where the

coefficient matrix A is sparse [6].

On the other hand, ADOL-C is a software system to compute mathematical derivatives

(gradient, Jacobian, Hessian, Taylor coefficients) of a mathematical function [12].

36

www.manaraa.com

4.2. SETTINGS

CSparse

CSparse is a project which contains direct methods for sparse linear systems. There are

many problems in computational field which deals with solution of sparse systems of linear

equations. To solve these problems efficiently, we require an in-depth knowledge of the

underlying theory, algorithms, and data structures found in sparse matrix software libraries.

CSparse presents the fundamentals of sparse matrix algorithms to provide the requisite

background [6]. This project is downloadable sparse matrix package that illustrates the

algorithms and theorems presented in [6]. To work with this project user must have some

knowledge on larger and more complex software packages and also a strong idea on MAT-

LAB and the C programming language. To understand more about this project (Sparse

Linear Systems), we suggest to get idea from [6].

The functions are categorized by the author of the software as: primary, primary utility,

secondary, secondary utility, tertiary and tertiary utility [6]. In this thesis, we have analyzed

64 (C) functions from CSparse package (see Appendix A).

ADOL-C

ADOL-C software is implemented in C/C++ [12]. This package facilitates the evaluation

of first and higher derivatives of vector functions written in C/C++. Using C, C++, Fortran,

or any other language that can be linked with C, anyone can use all routines in this package.

Error free numerical values of derivative vectors can be calculated with an efficient run-

ning time and small space by the given function evaluation program. Derivative matrices

are obtained by columns, by rows or in sparse format. For solution curves defined by ordi-

nary differential equations, special routines are provided that evaluate the Taylor coefficient

vectors and their Jacobians with respect to the current state vector. For explicitly or im-

plicitly defined functions derivative tensors are obtained with a complexity that grows only

quadratically in their degree. The derivative calculations involve a possibly substantial but

always predictable amount of data. Sequentially this data is accessed and hence it can be

37

www.manaraa.com

4.3. RESULTS

automatically paged out to external files.

In our thesis, we have analyzed 612 functions (implemented in C) from ADOL-C pack-

age (see Appendix B).

4.2.2 Selection of the Threshold

In Algorithm 1, we have talked about a threshold (Step 2 in Algorithm 1), which helps

to decide whether a function should be included in the tier or not (steps 20 and 31). The

value of threshold should be chosen in between 0 and 1, because we know that the value

of cos(θ) varies from 0 to 1. In this thesis, the value of cosine similarity (cos(θ)) cannot be

negative because the vectors are positive. Since the vectors are selected from dependency

matrix (dependency cannot have negative value), the vectors will always lie in the first

quadrant. Two functions are more similar if their cos(θ) value is close to 1. (Note: If two

vectors are similar or parallel it means their angle is 0◦, hence cos(0◦) = 1). On the other

hand, if cos(θ) value between two vectors is close to 0, then they are more dissimilar.

4.3 Results

In this section, we provide results from numerical experiments on selected projects. The

software for the experiments is obtained from Computational Infrastructure for Operation

Research (COIN-OR) [8]. The experiments were performed using a PC with 3.4 GHz Intel

Xeon CPU, 8 GB RAM running Linux. The implementation language was GNU Octave

and the code was compiled with version 4.2.2 compiler.

Test results for the selected test package CSparse are reported in figures 4.8, 4.9, 4.10

and 4.11. Here, figures 4.8 and 4.9 show results (functions of different tiers) where we

considered DSM to choose functions for their similarity check. On the other hand, tables

4.10 and 4.11 show results where we considered AA> and A>A (for hub and authority

respectively) to choose functions for their similarity check. In the following section we

discuss these results to validate our approach.

38

www.manaraa.com

4.3. RESULTS

Similarly, test results for the selected software ADOL-C are reported in figures 4.12,

4.13, 4.14 and 4.15. Here, in all cases we considered matrices AA> and A>A (for hub and

authority respectively) to choose functions for their similarity check. We reported results

separately for threshold = 0.4 in figures 4.14 and 4.15.

Now we discuss the results for software ADOL-C. Figures 4.12 and 4.14 show that for

different threshold values we get different number of tiers for hub functions. Again, figures

4.13 and 4.15 show that for different threshold values we get different number of tiers for

authority functions.

4.3.1 Discussion

Figure 4.7: DSM of CSparse with provided partitions [6]. Primary, Primary Utility, Sec-
ondary, Secondary Utility, Tertiary and Tertiary utility are marked by red, purple, green,
yellow, blue and brown colors respectively.

Figure 4.7 is the DSM which represents the partition provided in [6]. Here, the partitions

are primary (red color), primary utility (purple color), secondary (green color), secondary

utility (yellow color), tertiary (blue color) and tertiary utility (brown color). We see that

39

www.manaraa.com

4.3. RESULTS

Figure 4.8: CSparse, Tiers of Hub Functions functions are selected from DSM

Figure 4.9: CSparse, Tiers of Authority Functions functions are selected from DSM

40

www.manaraa.com

4.3. RESULTS

the primary, secondary and tertiary functions mostly call other functions. According to

HITS method [17], these functions are important hubs. On the other hand, we observe that

utilities are mostly called by other functions and according to HITS method these can be

considered as authorities.

Figures 4.8 and 4.10 show that for different threshold values we get different number

of tiers for hub functions. These tiers also match with the category given in CSparse. For

example, in Figure 4.8, Hub Tier 5 contains three functions: cs post, cs counts and cs etree

which are categorized as tertiary functions in [6] (see Figure 4.7).

Similarly, figures 4.9 and 4.11 show that for different threshold values we get different

number of tiers for authority functions. These tiers also match with the category given in

CSparse. For example, in Figure 4.9, Authority Tier 1 contains three functions: cs malloc,

cs calloc and cs sfree which are categorized as utility functions in [6] (see Figure 4.7).

Hence our method produces a good approximation of author’s partition.

41

www.manaraa.com

4.3. RESULTS

Fi
gu

re
4.

10
:C

Sp
ar

se
,T

ie
rs

of
H

ub
Fu

nc
tio

ns
fu

nc
tio

ns
ar

e
se

le
ct

ed
fr

om
A

A
>

42

www.manaraa.com

4.3. RESULTS

Fi
gu

re
4.

11
:C

Sp
ar

se
,T

ie
rs

of
A

ut
ho

ri
ty

Fu
nc

tio
ns

fu
nc

tio
ns

ar
e

se
le

ct
ed

fr
om

A
>

A

43

www.manaraa.com

4.3. RESULTS

Figure 4.12: ADOL-C, Tiers of Hub Functions functions are selected from AA>

44

www.manaraa.com

4.3. RESULTS

Figure 4.13: ADOL-C, Tiers of Authority Functions functions are selected from A>A

45

www.manaraa.com

4.3. RESULTS

Figure 4.14: ADOL-C, Hub Functions are selected from AA>, threshold = 0.4

46

www.manaraa.com

4.3. RESULTS

Figure 4.15: ADOL-C, Authority Functions are selected from A>A, threshold = 0.4

47

www.manaraa.com

Chapter 5

Summary and Future Work

In this thesis we have presented an approach to group or cluster the design elements of

scientific software into “tiers” ranked by their “importance”. First we have analyzed the

dependency structures of software using tool “Understand” and built DSM. The DSM of

the call graph provides a convenient tool so that linear algebraic techniques can be applied

to identify important callers and callees through the calculation of matrix exponential. Us-

ing the notion of “importance” of design elements [13], we ranked those design elements.

Then we uncovered “similarity” among design elements. Finally, using the “similarity”

among design elements, we group them into tiers. Besides using only DSM, we also used

matrices B1 = AA> and B2 = A>A to choose functions which have semantic dependency re-

lationship between functions. We applied our algorithm on CSparse and ADOL-C software

implemented in C.

Using our algorithm, we can categorize all important functions of the system. This

category helps the user of the system to identify their usable functions (hubs). A good

system needs to be updated regularly. But for variety of reasons legacy software may not

contain adequate technical documentation so that from a usability point of view it may be

difficult to detect and retrieve components that could be reused in other software projects.

Therefore using our approach a developer of a system can identify important authority

functions which are called by important hubs. This finding suggests that the analysis of

different tiers of functions of a software system might serve as guidance to developers in

the challenging task of redesigning a software by detecting and retrieving components that

48

www.manaraa.com

5. SUMMARY AND FUTURE WORK

could be reused in other software projects.

In terms of further research, we would like to include more test problems of larger

networks. It would be interesting to include problems from different scientific domain, for

example, SNAP and DIMACS10 to identify groups of important nodes. In this research

we have considered unweighted matrices because to identify similarity we needed only

information about dependency. For further research, we can compare our algorithm for both

weighted and unweighted matrices. Also, in future, we would like to apply our method to

software library of legacy code, where very little or no documentation is available about the

project. The method that we developed in this thesis is likely to be useful for these types of

library.

49

www.manaraa.com

Bibliography

[1] Lazima Ansari, Shahadat Hossain, and Ahamad Imtiaz Khan. DSMDE: A data ex-
change format for design structure models. Sustainability in Modern Project Man-
agement: Proceedings of the 18th International DSM Conference, pages 111–121,
2016.

[2] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice, 2e.
Addison Wesley, 2003.

[3] Michele Benzi, Ernesto Estrada, and Christine Klymko. Ranking hubs and authorities
using matrix functions. Linear Algebra and its Applications, 438(5):2447–2474, 2013.

[4] Dan Braha and Yaneer Bar-Yam. The statistical mechanics of complex product de-
velopment: Empirical and analytical results. Management Science, 53(7):1127–1145,
2007.

[5] Jonathan J Crofts and Desmond J Higham. A weighted communicability measure
applied to complex brain networks. Journal of the Royal Society, Interface, 6(33):411–
414, 2009.

[6] Timothy A. Davis. Direct methods for sparse linear systems (fundamentals of algo-
rithms 2). SIAM, 2006.

[7] Steven D Eppinger and Tyson R Browning. Design structure matrix methods and
applications. MIT press, 2012.

[8] John Forrest, Ted Ralphs, Stefan Vigerske, Lou Hafer, Bjarni Kristjansson, jpfasano,
Edwin Straver, Miles Lubin, Gambini Santos, rlougee, and Matthew Saltzman. coin-
or/cbc: Version 2.9.9, July 2018.

[9] Linton C Freeman. conceptual clarification.” social networks. “Centrality in social
networks, 1(3):215–239, 1978.

[10] Gene H Golub and Charles F Van Loan. Matrix computations. JHU Press, 3, 2012.

[11] Marco A. Gonzalez. A new change propagation metric to assess software evolvability.
PhD thesis, University of British Columbia, 2013.

[12] Andreas Griewank, David Juedes, and Jean Utke. ADOL-C: a package for the auto-
matic differentiation of algorithms written in c/c++. ACM Transactions on Mathemat-
ical Software, 1996.

50

www.manaraa.com

BIBLIOGRAPHY

[13] S Hossain, SF Khan, and R Quashem. On ranking components in scientific software.
In DSM 2015: Modeling and managing complex systems-Proceedings of the 17th
International DSM Conference Fort Worth (Texas, USA), 4-6 November 2015, pages
245–254, 2015.

[14] Shahadat Hossain et al. Efficiently computing with design structure matrices. In
DSM 2010: Proceedings of the 12th International DSM Conference, Cambridge, UK,
22.-23.07. 2010, pages 345–358, 2010.

[15] Shahadat Hossain and Ahmed Tahsin Zulkarnine. Design structure of scientific
software–a case study. In DSM 2011: Proceedings of the 13th International DSM
Conference, pages 129–141, 2011.

[16] D. Kelly and R. Sanders. Assessing the quality of scientific software. in Proc of
the First International Workshop on Software Engineering for Computational Science
and Engineering, 2008.

[17] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999.

[18] Anany V Levitin. Introduction to design & analysis of algorithms: For anna university,
2e. Pearson Education India, 2009.

[19] Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015–1030, 2006.

[20] M. W. Maier, D. Emery, and R. Hilliard. Software architecture: introducing ieee
standard 1471. Computer, 34(4):107–109, 2001.

[21] Scientific Toolworks Inc. Scitools: Understand. https://scitools.com/.

[22] Alexandru Telea, Hessel Hoogendorp, Ozan Ersoy, and Dennie Reniers. Extraction
and visualization of call dependencies for large C/C++ code bases: A comparative
study. In Proceedings of the 5th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis, VISSOFT 2009, Edmonton, Alberta, Canada,
September 25, 2009, pages 81–88. IEEE Computer Society, 2009.

51

www.manaraa.com

Appendix A

List of Functions of CSparse

Figure A.1: List of Functions of CSparse

52

www.manaraa.com

Appendix B

List of Functions of ADOL-C

Figure B.1: List of Functions of ADOL-C

53

www.manaraa.com

B. LIST OF FUNCTIONS OF ADOL-C

Figure B.2: List of Functions of ADOL-C

54

www.manaraa.com

B. LIST OF FUNCTIONS OF ADOL-C

Figure B.3: List of Functions of ADOL-C

55

www.manaraa.com

B. LIST OF FUNCTIONS OF ADOL-C

Figure B.4: List of Functions of ADOL-C

56

